Bihani O, Rai T, Panda D. Interaction of proteins with lemon-juice/glutathione-derived carbon nanodot: Interplay of induced-aggregation and co-solubilization.
Int J Biol Macromol 2018;
112:1234-1240. [PMID:
29427683 DOI:
10.1016/j.ijbiomac.2018.01.211]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
The accumulation of protein aggregates (tau) causes Alzheimer's disease (AD), Parkinson's disease (PD), and a range of neurodegenerative diseases. To develop a less toxic and bio-derived nanomaterials for inhibition of protein-aggregation, carbon nanodot has been used for this study. Nanodot have generated huge interest in biomedical applications owing to unique emission property and good biocompatibility. A carbon nanodot is synthesized from a natural resource-lemon juice and glutathione. The synthesized nanodot possesses excitation-independent emission and nano-sheet like with high graphitic content. Interaction of protein with CND is monitored by intrinsic fluorescence (trp residues), FT-IR and circular dichroism spectroscopy. Whereas it solubilizes the protein aggregates at its higher concentration. Both induced-aggregation and co-solubilization are sequence-independent and dictated by nanodot. The study may shed light on the role of glutathione in glutathione-dependent glyoxalase system toward defence against glycation product.
Collapse