1
|
Naumchyk V, Andriashvili VA, Radchenko DS, Dudenko D, Moroz YS, Tolmachev AA, Zhersh S, Grygorenko OO. S NAr or Sulfonylation? Chemoselective Amination of Halo(het)arene Sulfonyl Halides for Synthetic Applications and Ultralarge Compound Library Design. J Org Chem 2024; 89:3161-3183. [PMID: 38383160 DOI: 10.1021/acs.joc.3c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The chemoselectivity of halo(het)arene sulfonyl halide aminations is studied thoroughly under parallel synthesis conditions, and the scope and limitations of the method are established. It is shown that SNAr-reactive sulfonyl halides typically undergo sulfonamide synthesis during the first step; the second amination is also possible provided that the SNAr-active center is sufficiently reactive. On the contrary, sulfonyl fluorides bearing an arylating moiety undergo selective transformation at the latter reactive center under proper control. Further sulfur-fluoride exchange (SuFEx) is also possible, which can be especially valuable for some sulfonyl halide classes. The developed two-step parallel double amination protocol provides access to a 6.67-billion compound synthetically tractable REAL-type chemical space (76% expected synthesis success rate).
Collapse
Affiliation(s)
- Vasyl Naumchyk
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | | | - Dmytro Dudenko
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
| | - Yurii S Moroz
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
- Chemspace, Winston Churchill Street 85, Kyïv 02094, Ukraine
| | - Andrey A Tolmachev
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Serhii Zhersh
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| |
Collapse
|
2
|
Salvadori K, Churý M, Budka J, Harvalík J, Matějka P, Šimková L, Lhoták P. Chemoselective Electrochemical Cleavage of Sulfonimides as a Direct Way to Sulfonamides. J Org Chem 2024; 89:1425-1437. [PMID: 38198698 PMCID: PMC10845148 DOI: 10.1021/acs.joc.3c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
A new method for selective cleavage of sulfonimides into sulfonamides in high yields using a simple electrochemical approach is shown. As revealed by the electrochemical study, the aromatic sulfonimides can be selectively cleaved by electrolysis of the starting compound at a given potential (only -0.9 V vs SCE for the nosyl group). The high chemoselectivity was confirmed by preparative electrolysis, and the results were supported with DFT calculations of a set of substances bearing different sulfonimide functions. Moreover, various experimental setups together with other attempts to simplify the procedure were tested. Finally, the removal of the p-nosyl group from the corresponding sulfonimides proceeds smoothly regardless of the number of nosyl groups and the overall shape of the complex molecule. Thus, the method is interesting for use in the field of multifunctional molecules such as calix[n]arenes.
Collapse
Affiliation(s)
- Karolína Salvadori
- J.
Heyrovský Institute of Physical Chemistry of Czech Academy
of Sciences v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague (UCTP), Technická 5, 166 28 Prague 6, Czech Republic
- Institute
of Chemical Process Fundamentals of Czech Academy of Sciences v.v.i., Rozvojová 135, 165 02 Prague 6, Czech Republic
| | - Michal Churý
- Department
of Organic Chemistry, UCTP, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jan Budka
- Department
of Organic Chemistry, UCTP, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jakub Harvalík
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague (UCTP), Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Matějka
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague (UCTP), Technická 5, 166 28 Prague 6, Czech Republic
| | - Ludmila Šimková
- J.
Heyrovský Institute of Physical Chemistry of Czech Academy
of Sciences v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Pavel Lhoták
- Department
of Organic Chemistry, UCTP, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
3
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
4
|
Li SY, Zhang Y, Wang YN, Yuan LC, Kong CC, Xiao ZP, Zhu HL. Identification of (N-aryl-N-arylsulfonyl)aminoacetohydroxamic acids as novel urease inhibitors and the mechanism exploration. Bioorg Chem 2022; 130:106275. [DOI: 10.1016/j.bioorg.2022.106275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
|
5
|
Construction of Benzenesulfonamide Derivatives via Copper and Visible Light-induced Azides and S(O)2–H Coupling. Molecules 2022; 27:molecules27175539. [PMID: 36080306 PMCID: PMC9457716 DOI: 10.3390/molecules27175539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
We here have developed an S(O)2–N coupling between phenylsulfinic acid derivatives and aryl azides by dual copper and visible light catalysis. In this efficient and mild pathway, the reaction produces sulfonamide compounds under redox-neutral condition, which is mechanistically different from the nitrogen nucleophilic substitution reactions. Significantly, this transformation intends to utilize the property of visible light-induced azides to generate triplet nitrene and followed coupling with sulfonyl radicals in situ to achieve structurally diverse benzenesulfinamides in good yields.
Collapse
|
6
|
Laha JK, Gupta P. Sulfoxylate Anion Radical-Induced Aryl Radical Generation and Intramolecular Arylation for the Synthesis of Biarylsultams. J Org Chem 2022; 87:4204-4214. [PMID: 35245054 DOI: 10.1021/acs.joc.1c03031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aryl radical generation from the corresponding aryl halides using an electron donor and subsequent intramolecular cyclization with arenes could be an important advancement in contemporary biaryl synthesis. A green and practically useful synthetic protocol to access diverse six- and seven-membered biarylsultams especially with a free NH group including demonstration of a gram-scale synthesis is reported herein. The sulfoxylate anion radical (SO2-•), generated in situ from the reagents rongalite or sodium dithionite (Na2S2O4), was found to be the key single electron transfer agent forming aryl radicals from aryl halides, which upon intramolecular arylation gives biarylsultams with good to excellent yields. The approach features generation of aryl radicals that remained underexplored, use of a cheap and readily available industrial reagents, and transition metal-free, mild, and green reaction conditions.
Collapse
Affiliation(s)
- Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Pankaj Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| |
Collapse
|
7
|
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar, India
| |
Collapse
|