1
|
Directed synthesis and study of their spectroscopic behavior in solution of rare-earth phthalocyaninates substituted by benzyloxy- and methylphenylethylphenoxy-groups. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01120-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Martynov AG, Horii Y, Katoh K, Bian Y, Jiang J, Yamashita M, Gorbunova YG. Rare-earth based tetrapyrrolic sandwiches: chemistry, materials and applications. Chem Soc Rev 2022; 51:9262-9339. [DOI: 10.1039/d2cs00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises advances in chemistry of tetrapyrrole sandwiches with rare earth elements and highlights the current state of their use in single-molecule magnetism, organic field-effect transistors, conducting materials and nonlinear optics.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninskiy pr., 31, Moscow, Russia
| |
Collapse
|
3
|
Double-decker lutetium phthalocyanine functionalized with 4-phenylthiazol-2-thiol moieties: Synthesis, characterization, electrochemistry, spectroelectrochemistry and electrochromism. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Chan WL, Xie C, Lo WS, Bünzli JCG, Wong WK, Wong KL. Lanthanide-tetrapyrrole complexes: synthesis, redox chemistry, photophysical properties, and photonic applications. Chem Soc Rev 2021; 50:12189-12257. [PMID: 34553719 DOI: 10.1039/c9cs00828d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tetrapyrrole derivatives such as porphyrins, phthalocyanines, naphthalocyanines, and porpholactones, are highly stable macrocyclic compounds that play important roles in many phenomena linked to the development of life. Their complexes with lanthanides are known for more than 60 years and present breath-taking properties such as a range of easily accessible redox states leading to photo- and electro-chromism, paramagnetism, large non-linear optical parameters, and remarkable light emission in the visible and near-infrared (NIR) ranges. They are at the centre of many applications with an increasing focus on their ability to generate singlet oxygen for photodynamic therapy coupled with bioimaging and biosensing properties. This review first describes the synthetic paths leading to lanthanide-tetrapyrrole complexes together with their structures. The initial synthetic protocols were plagued by low yields and long reaction times; they have now been replaced with much more efficient and faster routes, thanks to the stunning advances in synthetic organic chemistry, so that quite complex multinuclear edifices are presently routinely obtained. Aspects such as redox properties, sensitization of NIR-emitting lanthanide ions, and non-linear optical properties are then presented. The spectacular improvements in the quantum yield and brightness of YbIII-containing tetrapyrrole complexes achieved in the past five years are representative of the vitality of the field and open welcome opportunities for the bio-applications described in the last section. Perspectives for the field are vast and exciting as new derivatizations of the macrocycles may lead to sensitization of other LnIII NIR-emitting ions with luminescence in the NIR-II and NIR-III biological windows, while conjugation with peptides and aptamers opens the way for lanthanide-tetrapyrrole theranostics.
Collapse
Affiliation(s)
- Wai-Lun Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chen Xie
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean-Claude G Bünzli
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China. .,Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland.
| | - Wai-Kwok Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
5
|
May A, Majumdar P, Martynov AG, Lapkina LA, Troyanov SI, Gorbunova YG, Tsivadze AY, Mack J, Nyokong T. Optical limiting properties, structure and simplified TD-DFT calculations of scandium tetra-15-crown-5 phthalocyaninates. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s108842462050011x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The optical limiting properties of crown-ether-substituted scandium(III) phthalocyaninate complexes, bis-tetra-15-crown-5-phthalocyaninates Sc[(15C5)4Pc][Formula: see text] (I) and Sc[(15C5)4Pc][Formula: see text] (Ia), together with monophthalocyaninate [(15C5)4Pc]Sc(OAc) (II) were measured by using the Z-scan technique (532 nm laser and pulse rate of 10 ns). It was revealed that expansion of the [Formula: see text]-system on moving from the monomeric Sc complex II to sandwich compound I and changing the electronic state of the sandwich compound from the anionic Ia species to the neutral radical I improves the optical limiting properties. The Im[[Formula: see text]] values obtained lie in the 10[Formula: see text]–10[Formula: see text] esu range that is consistent with those reported previously for other organic chromophores. The crystal structure of sandwich Sc(III) complex I was elucidated by means of single-crystal X-ray diffraction analysis and was used to guide a series of theoretical calculations. It was demonstrated that the application of simplified time-dependent density functional theory (sTD-DFT) calculations can provide reasonably accurate predictions for compounds of this type when the geometries of the complexes are clearly defined.
Collapse
Affiliation(s)
- Aviwe May
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Poulomi Majumdar
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Alexander G. Martynov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow 119071, Russia
| | - Lyudmila A. Lapkina
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119991, Russia
| | - Sergey I. Troyanov
- Chemistry Department, Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Yulia G. Gorbunova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow 119071, Russia
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119991, Russia
| | - Aslan Yu. Tsivadze
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow 119071, Russia
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr., 31, Moscow 119991, Russia
| | - John Mack
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
6
|
Sekhosana KE, Nyokong T. Nonlinear optical behavior of n-tuple decker phthalocyanines at the nanosecond regime: investigation of change in mechanisms. RSC Adv 2019; 9:16223-16234. [PMID: 35521364 PMCID: PMC9064363 DOI: 10.1039/c9ra01836k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
The coordination system of rare-earth n-tuple decker phthalocyanines would be better suited with appropriate metal ions with the correct coordination number and the solvent system of the reaction, amongst other reasons, for the formation of n-tuple decker phthalocyanines. As a result, these complexes are very rare. In this manuscript, we present new n-tuple decker phthalocyanines in the form of double- (complex 2), quadruple- (complex 3a) and sextuple-decker phthalocyanines (complex 3b), all of which contain neodymium and cadmium metal ions. The primary focus is the investigation of the nonlinear optical (NLO) mechanisms responsible for the observed reverse saturable absorption. While the extension of the π-electron system has been found to enhance the nonlinear optical behavior of complexes 3a and 3b, a change in the NLO mechanisms has been observed, with complex 2 lacking the triplet state population, as revealed by a laser flash photolysis technique. It has also been established that the excited state absorption cross sections follow a clear order of magnitude for the complexes under investigation: σ 23 (for 3b) > σ 23 (for 3a) > σ 1m (for 2). This trend evidences the effects of the extension of the π-electron system.
Collapse
Affiliation(s)
- Kutloano E Sekhosana
- Institute for Nanotechnology and Innovation, Department of Chemistry, Rhodes University PO Box 94 Grahamstown 6140 South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology and Innovation, Department of Chemistry, Rhodes University PO Box 94 Grahamstown 6140 South Africa
| |
Collapse
|