1
|
Khansari N, Ghafuri H, Esmaili Zand HR, Maleki A, Moradi H. Lignosulfonate, A Promising Biomass-Based Building Block in the Preparation of Recyclable Nanocomposite and Its Application in Condensation Reactions. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2028867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nafiseh Khansari
- Food and Drug Deputy, Arak University of Medical Sciences, Arak, Iran
| | - Hossein Ghafuri
- Catalysis and Organic Synthesis Research Laboratory, Department of Chemistry of Iran, University of Science and Technology, Tehran, Iran
| | - Hamid Reza Esmaili Zand
- Catalysis and Organic Synthesis Research Laboratory, Department of Chemistry of Iran, University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysis and Organic Synthesis Research Laboratory, Department of Chemistry of Iran, University of Science and Technology, Tehran, Iran
| | - Hamidreza Moradi
- Catalysis and Organic Synthesis Research Laboratory, Department of Chemistry of Iran, University of Science and Technology, Tehran, Iran
| |
Collapse
|
2
|
Eivazzadeh-Keihan R, Asgharnasl S, Moghim Aliabadi HA, Tahmasebi B, Radinekiyan F, Maleki A, Bahreinizad H, Mahdavi M, Alavijeh MS, Saber R, Lanceros-Méndez S, Shalan AE. Magnetic graphene oxide-lignin nanobiocomposite: a novel, eco-friendly and stable nanostructure suitable for hyperthermia in cancer therapy. RSC Adv 2022; 12:3593-3601. [PMID: 35425373 PMCID: PMC8979318 DOI: 10.1039/d1ra08640e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
In this research, a novel magnetic nanobiocomposite was designed and synthesized in a mild condition, and its potential in an alternating magnetic field was evaluated for hyperthermia applications. For this purpose, in the first step, graphene oxide was functionalized with a natural lignin polymer using epichlorohydrin as the cross-linking agent. In the second step, the designed magnetic graphene oxide-lignin nanobiocomposite was fabricated by the in situ preparation of magnetic Fe3O4 nanoparticles in the presence of graphene oxide functionalized with lignin. The resultant magnetic nanobiocomposite possessed certain main properties, including stability and homogeneity in aqueous solutions, making it suitable for hyperthermia applications. The chemical and structural properties of the synthesized magnetic graphene oxide-lignin composite were characterized using FT-IR, EDX, FE-SEM, TEM, TG and VSM analyses. The saturation magnetization value of this magnetic nanocomposite was recorded as 17.2 emu g-1. Further, the maximum specific absorption rate was determined to be 121.22 W g-1. Given these results, this newly fabricated magnetic nanobiocomposite may achieve considerable performance under the alternating magnetic field in fluid hyperthermia therapy.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Somayeh Asgharnasl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
- Advanced Chemistry Studies Lab, Department of Chemistry, K. N. Toosi University of Technology Tehran Iran
| | - Behnam Tahmasebi
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hossein Bahreinizad
- Mechanical Engineering Department, Sahand University of Technology Tabriz Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | | | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science 48009 Bilbao Spain
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87, Helwan Cairo 11421 Egypt
| |
Collapse
|
3
|
Mirza‐Aghayan M, Saeedi M, Boukherroub R. Carbon–nitrogen bond formation using modified graphene oxide derivatives decorated with copper complexes and nanoparticles. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mandana Saeedi
- Chemistry and Chemical Engineering Research Center of Iran (CCERCI) Tehran Iran
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR8520 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts‐de‐France Lille France
| |
Collapse
|
4
|
ompg-C3N4/SO3H: an efficient and recyclable organocatalyst for the facile synthesis of 2,3-dihydroquinazolin-4(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03873-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|