1
|
Chen LH, Hu JN. Development of nano-delivery systems for loaded bioactive compounds: using molecular dynamics simulations. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38206576 DOI: 10.1080/10408398.2023.2301427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decade, a remarkable surge in the development of functional nano-delivery systems loaded with bioactive compounds for healthcare has been witnessed. Notably, the demanding requirements of high solubility, prolonged circulation, high tissue penetration capability, and strong targeting ability of nanocarriers have posed interdisciplinary research challenges to the community. While extensive experimental studies have been conducted to understand the construction of nano-delivery systems and their metabolic behavior in vivo, less is known about these molecular mechanisms and kinetic pathways during their metabolic process in vivo, and lacking effective means for high-throughput screening. Molecular dynamics (MD) simulation techniques provide a reliable tool for investigating the design of nano-delivery carriers encapsulating these functional ingredients, elucidating the synthesis, translocation, and delivery of nanocarriers. This review introduces the basic MD principles, discusses how to apply MD simulation to design nanocarriers, evaluates the ability of nanocarriers to adhere to or cross gastrointestinal mucosa, and regulates plasma proteins in vivo. Moreover, we presented the critical role of MD simulation in developing delivery systems for precise nutrition and prospects for the future. This review aims to provide insights into the implications of MD simulation techniques for designing and optimizing nano-delivery systems in the healthcare food industry.
Collapse
Affiliation(s)
- Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Rezende SB, Oshiro KGN, Júnior NGO, Franco OL, Cardoso MH. Advances on chemically modified antimicrobial peptides for generating peptide antibiotics. Chem Commun (Camb) 2021; 57:11578-11590. [PMID: 34652348 DOI: 10.1039/d1cc03793e] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are pinpointed as promising molecules against antibiotic-resistant bacterial infections. Nevertheless, there is a discrepancy between the AMP sequences generated and the tangible outcomes in clinical trials. AMPs' limitations include enzymatic degradation, chemical/physical instability and toxicity toward healthy human cells. These factors compromise AMPs' bioavailability, resulting in limited therapeutic potential. To overcome such obstacles, peptidomimetic approaches, including glycosylation, PEGylation, lipidation, cyclization, grafting, D-amino acid insertion, stapling and dendrimers are promising strategies to fine-tune AMPs. Here we focused on chemical modifications applied for AMP optimization and how they have helped these peptide-based antibiotic candidates' design and translational potential.
Collapse
Affiliation(s)
- Samilla B Rezende
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Nelson G O Júnior
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| | - Octávio L Franco
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil.,Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| | - Marlon H Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília (UnB), Brasília, DF, Brazil.,Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
| |
Collapse
|
3
|
Szatkowski L, Varikoti RA, Dima RI. Modeling the Mechanical Response of Microtubule Lattices to Pressure. J Phys Chem B 2021; 125:5009-5021. [PMID: 33970630 DOI: 10.1021/acs.jpcb.1c01770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microtubules, the largest and stiffest filaments of the cytoskeleton, have to be well adapted to the high levels of crowdedness in cells to perform their multitude of functions. Furthermore, fundamental processes that involve microtubules, such as the maintenance of the cellular shape and cellular motion, are known to be highly dependent on external pressure. In light of the importance of pressure for the functioning of microtubules, numerous studies interrogated the response of these cytoskeletal filaments to osmotic pressure, resulting from crowding by osmolytes, such as poly(ethylene glycol)/poly(ethylene oxide) (PEG/PEO) molecules, or to direct applied pressure. The interpretation of experiments is usually based on the assumptions that PEG molecules have unfavorable interactions with the microtubule lattices and that the behavior of microtubules under pressure can be described by using continuous models. We probed directly these two assumptions. First, we characterized the interaction between the main interfaces in a microtubule filament and PEG molecules of various sizes using a combination of docking and molecular dynamics simulations. Second, we studied the response of a microtubule filament to compression using a coarse-grained model that allows for the breaking of lattice interfaces. Our results show that medium length PEG molecules do not alter the energetics of the lateral interfaces in microtubules but rather target and can penetrate into the voids between tubulin monomers at these interfaces, which can lead to a rapid loss of lateral interfaces under pressure. Compression of a microtubule under conditions corresponding to high osmotic pressure results in the formation of the deformed phase found in experiments. Our simulations show that the breaking of lateral interfaces, rather than the buckling of the filament inferred from the continuous models, accounts for the deformation.
Collapse
Affiliation(s)
- Lukasz Szatkowski
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States.,Division of Science, Mathematics, and Engineering, University of South Carolina Sumter, Sumter, South Carolina 29150, United States
| | - Rohith Anand Varikoti
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
4
|
Munasinghe A, Mathavan A, Mathavan A, Lin P, Colina CM. Atomistic insight towards the impact of polymer architecture and grafting density on structure-dynamics of PEGylated bovine serum albumin and their applications. J Chem Phys 2021; 154:075101. [PMID: 33607915 DOI: 10.1063/5.0038306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macromolecules such as proteins conjugated to polyethylene glycol (PEG) have been employed in therapeutic drug applications, and recent research has emphasized the potential of varying polymer architectures and conjugation strategies to achieve improved efficacy. In this study, we performed atomistic molecular dynamics simulations of bovine serum albumin (BSA) conjugated to 5 kDa PEG polymers in an array of schemes, including varied numbers of attached chains, grafting density, and nonlinear architectures. Nonlinear architectures included U-shaped PEG, Y-shaped PEG, and poly(oligoethylene glycol methacrylate) (POEGMA). Buried surface area calculations and polymer volume map analyses revealed that volume exclusion behaviors of the high grafting density conjugate promoted additional protein-polymer interactions when compared to simply increasing numbers of conjugated chains uniformly across the protein surface. Investigation of nonlinear polymer architectures showed that stable polymer-lysine loop-like conformations seen in previous conjugate designs were more variable in prevalence, especially in POEGMA, which contained short oligomer PEG chains. The findings of this comprehensive study of alternate PEGylation schemes of BSA provide critical insight into molecular patterns of interaction within bioconjugates and highlight their importance in the future of controlled modification of conjugate system parameters.
Collapse
Affiliation(s)
- Aravinda Munasinghe
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Akash Mathavan
- Department of Medicine, University of Florida, Gainesville, Florida 32611, USA
| | - Akshay Mathavan
- Department of Medicine, University of Florida, Gainesville, Florida 32611, USA
| | - Ping Lin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Coray M Colina
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
5
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2020; 11:2205-2231. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.
Collapse
|
8
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
9
|
Taylor PA, Jayaraman A. Molecular Modeling and Simulations of Peptide–Polymer Conjugates. Annu Rev Chem Biomol Eng 2020; 11:257-276. [DOI: 10.1146/annurev-chembioeng-092319-083243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide–polymer conjugates are a class of soft materials composed of covalently linked blocks of protein/polypeptides and synthetic/natural polymers. These materials are practically useful in biological applications, such as drug delivery, DNA/gene delivery, and antimicrobial coatings, as well as nonbiological applications, such as electronics, separations, optics, and sensing. Given their broad applicability, there is motivation to understand the molecular and macroscale structure, dynamics, and thermodynamic behavior exhibited by such materials. We focus on the past and ongoing molecular simulation studies aimed at obtaining such fundamental understanding and predicting molecular design rules for the target function. We describe briefly the experimental work in this field that validates or motivates these computational studies. We also describe the various models (e.g., atomistic, coarse-grained, or hybrid) and simulation methods (e.g., stochastic versus deterministic, enhanced sampling) that have been used and the types of questions that have been answered using these computational approaches.
Collapse
Affiliation(s)
- Phillip A. Taylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
10
|
Yang S, Ding F, Gao Z, Guo J, Cui J, Zhang P. Fabrication of Poly(ethylene glycol) Capsules via Emulsion Templating Method for Targeted Drug Delivery. Polymers (Basel) 2020; 12:E1124. [PMID: 32423009 PMCID: PMC7285215 DOI: 10.3390/polym12051124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
To reduce nonspecific interactions and circumvent biological barriers, low-fouling material of poly(ethylene glycol) (PEG) is most used for the modification of drug nanocarriers. Herein, we report the fabrication of PEG capsules via the free-radical polymerization of linear PEG or 8-arm-PEG using an emulsion templating method for targeted drug delivery. Doxorubicin (DOX) could be loaded in capsules via electrostatic interactions. The obtained capsules composed of 8-arm-PEG result in a lower cell association (2.2%) compared to those composed of linear PEG (7.3%) and, therefore, demonstrate the stealth property. The functionalization of cyclic peptides containing Arg-Gly-Asp (cRGD) on PEG capsules induce high cell targeting to U87 MG cells. A cell cytotoxicity assay demonstrates the biocompatibility of PEG capsules and high drug delivery efficacy of the targeted capsules. The reported capsules with the stealth and targeting property provide a potential platform for improved drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (S.Y.); (F.D.); (Z.G.); (J.G.); (J.C.)
| |
Collapse
|
11
|
Molecular understanding of interactions, structure, and drug encapsulation efficiency of Pluronic micelles from dissipative particle dynamics simulations. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04535-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|