1
|
Durugappa B, C S A, Doddamani SV, Somappa SB. DBU-Catalyzed Diastereo/Regioselective Access to Highly Substituted Spiro-oxetane Oxindoles via Ring Annulation of Isatins and Allenoates. J Org Chem 2023. [PMID: 37363866 DOI: 10.1021/acs.joc.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
A facile and efficient method for the diastereo/regioselective synthesis of highly functionalized spiro-oxetane oxindoles has been described. The 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed reaction proceeds via spiro-annulation of isatins and allenoates. The reaction is compatible with a wide range of isatins containing electron-donating groups (EDGs) and electron-withdrawing groups (EWGs) with various allenoates affording the corresponding products in acceptable yields. It is noteworthy that this is the first protocol for constructing structurally diverse motifs of highly functionalized spiro-oxetane oxindoles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Basavaraja Durugappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athira C S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Siddalingeshwar V Doddamani
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Antibacterial natural products from microbial and fungal sources: a decade of advances. Mol Divers 2023; 27:517-541. [PMID: 35301633 DOI: 10.1007/s11030-022-10417-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
Throughout the ages the world has witnessed the outbreak of many infectious diseases. Emerging microbial diseases pose a serious threat to public health. Increasing resistance of microorganisms towards the existing drugs makes them ineffective. In fact, anti-microbial resistance is declared as one of the top public health threats by WHO. Hence, there is an urge for the discovery of novel antimicrobial drugs to combat with this challenge. Structural diversity and unique pharmacological effects make natural products a prime source of novel drugs. Staggeringly, in spite of its extensive biodiversity, a prominent portion of microorganism species remains unexplored for the identification of bioactives. Microorganisms are a predominant source of new chemical entities and there are remarkable number of antimicrobial drugs developed from it. In this review, we discuss the contributions of microorganism based natural products as effective antibacterial agents, studied during the period of 2010-2020. The review encompasses over 140 structures which are either natural products or semi-synthetic derivatives of microbial natural products. 65 of them are identified as newly discovered natural products. All the compounds discussed herein, have exhibited promising efficacy against various bacterial strains.
Collapse
|
3
|
M S AKB, Mohan S, K T A, Chandramouli M, Alaganandam K, Ningaiah S, Babu KS, Somappa SB. Marine Based Natural Products: Exploring the Recent Developments in the Identification of Antimicrobial Agents. Chem Biodivers 2022; 19:e202200513. [PMID: 36000304 DOI: 10.1002/cbdv.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The marine ecosystem is the less explored, biologically diverse, and vastest resource to discover novel antimicrobial agents. In recent decades' antimicrobial drugs are losing their effectiveness due to the growing resistance among pathogens, which causes diseases to have considerable death rates across the globe. Therefore, there is a need for the discovery of new antibacterials that can reach the market. There is a gradual growth of compounds from marine sources which are entering the clinical trials. Thus, the prominence of marine natural products in the field of drug design and discovery across the academia and pharmaceutical industry is gaining attention. Herein, the present review covers nearly 200 marine based antimicrobial agents of 11 structural classes discovered from the year 2010 to 2022. All the discussed compounds have exhibited medium to high antimicrobial activity in inhibiting various microorganisms.
Collapse
Affiliation(s)
- Ajay Krishna B M S
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, 695019, Thiruvanathapuram, INDIA
| | - Sangeetha Mohan
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, CSIR-NIIST, 695019, Thiruvananthapuram, INDIA
| | - Ashitha K T
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, 695019, Thiruvananthapuram, INDIA
| | - Manasa Chandramouli
- Visvesvaraya Technological University, School of Chemistry, Visvesvaraya Technological University, 570 002, Mysore, INDIA
| | - Kumaran Alaganandam
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Chemical Sciences and Technology Division, Sir C V Raman Buiding, Chemical Sciences and Technology Division, TC 51/2151, Lal Lane, Industrial estate po., 695019, Thiruvananthapuram, INDIA
| | - Srikantamurthy Ningaiah
- Visvesvaraya Technological University, School of Chemistry, Vidyavardhaka College of Engineering, CSIR-NIIST, 570 002, Mysore, INDIA
| | - K Suresh Babu
- IICT: Indian Institute of Chemical Technology, Natural Products and Drug Discovery, IICT Campus, Hyderabad, INDIA
| | - Sasidhar B Somappa
- NIIST-CSIR: National Institute for Interdisciplinary Science and Technology CSIR, Organic Chemistry Section, Chemical Sciences and Technology Division, Sir C V Raman Block, Chemical Sciences and Technology Division, Industrial estate po., 695019, Thiruvananthapuram, INDIA
| |
Collapse
|
4
|
Mathada BS, Somappa SB. An insight into the recent developments in anti-infective potential of indole and associated hybrids. J Mol Struct 2022; 1261:132808. [PMID: 35291692 PMCID: PMC8913251 DOI: 10.1016/j.molstruc.2022.132808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Prevention, accurate diagnosis, and effective treatment of infections are the main challenges in the overall management of infectious diseases. The best example is the ongoing SARs-COV-2(COVID-19) pandemic; the entire world is extremely worried about at present. Interestingly, heterocyclic moieties provide an ideal scaffold on which suitable pharmacophores can be designed to construct novel drugs. Indoles are amongst the most essential class of heteroaromatics in medicinal chemistry, which are ubiquitous across natural sources. The aforesaid derivatives have become invaluable scaffolds because of their wide spectrum therapeutic applications. Therefore, many researchers are focused on the design and synthesis of indole and associated hybrids of biological relevance. Hence, in the present review, we concisely discuss the indole containing natural sources, marketed drugs, clinical candidates, and their biological activities like antibacterial, antifungal, anti-TB, antiviral, antimalarial, and anti-leishmanial activities. The structure-activity relationships study of indole derivatives is also presented for a better understanding of the identified structures. The literature data presented for the anti-infective agents herein covers largely for the last twelve years.
Collapse
Affiliation(s)
| | - Sasidhar B Somappa
- Organic Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Chang MY, Lin CY, Chen SM. Synthesis of 1‐Aryl Isoquinolinones or o‐Diaryl Pyrimidines via Bismuth Triflate‐Mediated Intermolecular Annulation of Arylacetic Acids with Nitroarylaldehydes or Trimethoxybenzene in the Presence of Acetonitrile. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Chai J, Nie Y, Wang Z, Cheng L, Liu YG, Wu J. Metal Free Access to Polysubstituted Pyrimidines via Nitrile Activation and [2+2+2] Cycloaddition. Chemistry 2021; 27:17565-17569. [PMID: 34626013 DOI: 10.1002/chem.202103219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 11/08/2022]
Abstract
Tf2 O mediated intermolecular / intramolecular [2+2+2] cycloaddition between alkynes and nitriles has been developed for efficient construction of polysubstituted pyrimidines and bicyclopyrimidines. In presence of Tf2 O, aza-allene species were generated in situ through nitrile activation and subsequently participated in the [2+2+2] cycloaddition, which was fully supported by deuteration experiments. The reaction had good substrate extensibility with moderate to excellent yield including trimethylsilylalkynes. The method was utilized as a synthetic tool in the preparation of a luminescent metal complex.
Collapse
Affiliation(s)
- Jinkui Chai
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yu Nie
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhao Wang
- Henan University of Animal Husbandry and Economy, Zhengzhou, 450001, P. R. China
| | - Li Cheng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ying-Guo Liu
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junliang Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Vidal M, Rodríguez‐Aguilar J, Aburto I, Aliaga C, Domínguez M. Reactivity of 4‐pyrimidyl Sulfonic Esters in Suzuki‐Miyaura Cross‐Coupling Reactions in Water Under Microwave Irradiation. ChemistrySelect 2021. [DOI: 10.1002/slct.202103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matías Vidal
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - José Rodríguez‐Aguilar
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - Ignacio Aburto
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - Carolina Aliaga
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
- Centro de Nanociencia y Nanotecnología CEDENNA Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| | - Moisés Domínguez
- Facultad de Química y Biología Universidad de Santiago de Chile Av. Bernardo O'Higgins 3363 Santiago Chile
| |
Collapse
|
8
|
Anaga N, D B, Abraham B, Nisha P, Varughese S, Jayamurthy P, Somappa SB. Advanced glycation end-products (AGE) trapping agents: Design and synthesis of nature inspired indeno[2,1-c]pyridinones. Bioorg Chem 2020; 105:104375. [PMID: 33113410 DOI: 10.1016/j.bioorg.2020.104375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022]
Abstract
Advanced glycation end products (AGEs) are implicated to be the key players in most of the diabetic complications. The AGE's interfere with the proteins heterogeneously, thereby rendering denaturation and the consequent loss of function and accumulation. Thus, a novel natural product inspired indeno[2,1-c]pyridinone (4a-4ad) molecular templates with AGE's trapping potential was designed through scaffold hopping approach and synthesized via facile two-step synthetic route. Amongst the tested indeno[2,1-c]pyridinone hybrids, 4i, 4x and 4aa exhibited excellent efficiency in trapping the AGE's. The percentage of antiglycation is measured by the analytical model system, i.e. via MG trapping capacity; here the compounds 4i, 4x and 4aa with 50.03%, 69.58%, and 93.37% respectively has displayed promising efficiency. In particular, 4aa demonstrated better activity than the positive control aminoguanidine (79.82%). The in-vitro toxicity of compounds was tested on L6 rat skeletal muscle cell lines revealed that none of the compounds showed any significant toxicity at concentrations up to 1000 μM.
Collapse
Affiliation(s)
- Nair Anaga
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Basavaraja D
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Billu Abraham
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P Nisha
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Purushothaman Jayamurthy
- Agro-Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|