1
|
Podolak M, Holota S, Deyak Y, Dziduch K, Dudchak R, Wujec M, Bielawski K, Lesyk R, Bielawska A. Tubulin inhibitors. Selected scaffolds and main trends in the design of novel anticancer and antiparasitic agents. Bioorg Chem 2024; 143:107076. [PMID: 38163424 DOI: 10.1016/j.bioorg.2023.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.
Collapse
Affiliation(s)
- Magdalena Podolak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Yaroslava Deyak
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; Department of Pharmaceutical Disciplines, Uzhhorod National University, Narodna Square 3, 88000 Uzhhorod, Ukraine
| | - Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Rostyslav Dudchak
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
2
|
Jayarajan R, Kottha T, Subbaramanian S, Vasuki G. Base Promoted Cascade Reaction: A Convenient Route to Hybrid S and N Polyheterocycles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramasamy Jayarajan
- Department of Chemistry Pondicherry University Puducherry 605014 India
- Presently at Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-106 91 Stockholm Sweden
| | | | - Sabarinathan Subbaramanian
- Department of Chemistry Pondicherry University Puducherry 605014 India
- Department of Chemistry Faculty of Engineering and Technology SRM Institute of Science and Technology, Vadapalani Campus, No. 1 Jawaharlal Nehru Road, Vadapalani TN India
| | | |
Collapse
|
3
|
Palanivel L, Gnanasambandam V. Diversity oriented multi-component reaction (DOS-MCR) approach to access natural product analogues: regio- and chemo-selective synthesis of polyheterocyclic scaffolds via one-pot cascade reactions. Org Biomol Chem 2020; 18:3082-3092. [PMID: 32255173 DOI: 10.1039/d0ob00368a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Skeletally diverse and complex aza-cyclopenta(cd)diindene, pyrrolo(3,4-d)pyridine-13-carboxamide, and furo-pyrrolo(1,2-a)imidazole-4-carboxamide fused polyheterocyclic hybrid scaffolds and a furo(2,3-b)furan core have been accessed via one-pot three-component reaction by exploiting the build/couple/pair strategy of diversity oriented synthesis (DOS). This protocol is metal free, has a good substrate scope and affords products with good to excellent yields and regio- and chemo-selectivity. The heterocyclic skeletons obtained in this study mimic natural products such as eupolauramine, gracilamine and presilphiperfolanol.
Collapse
|
4
|
Jayarajan R, Satheeshkumar R, Kottha T, Subbaramanian S, Sayin K, Vasuki G. Water mediated synthesis of 6-amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1,2'-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1,2'-bipyridine]-3-carboxamide - An experimental and computational studies with non-linear optical (NLO) and molecular docking analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117861. [PMID: 31806479 DOI: 10.1016/j.saa.2019.117861] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
6-Amino-5-cyano-2-oxo-N-(pyridin-2-yl)-4-(p-tolyl)-2H-[1,2'-bipyridine]-3-carboxamide and 6-amino-5-cyano-4-(4-fluorophenyl)-2-oxo-N-(pyridin-2-yl)-2H-[1,2'-bipyridine]-3-carboxamide were synthesized through three-component reaction between N1,N3-di(pyridin-2-yl)-malonamide, aldehyde and malononitrile in water using triethylamine as a base at room temperature. Synthesized compounds were characterized by using different techniques (FT-IR, NMR and X-ray diffraction). Additionally, the mentioned compounds were investigated by computational chemistry methods. Obtained results were supported with calculated results. Additionally, NLO properties and molecular docking analyses of related compounds were examined in detail. The binding modes of the compounds 4a and 4b were explored with the colchicine binding site of tubulin, from molecular docking studies, remarkable interactions have been observed for 4a and 4b near to the colchicines binding site of tubulin that may contribute to the inhibition of tubulin polymerization and anticancer activity.
Collapse
Affiliation(s)
- Ramasamy Jayarajan
- Department of Chemistry, Pondicherry University, Pondicherry 605014, India; Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Rajendran Satheeshkumar
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | | | - Sabarinathan Subbaramanian
- Department of Chemistry, Pondicherry University, Pondicherry 605014, India; Department of Chemistry, SRM Institute of Science and Technology (SRMIST), Vadapalani, Chennai-600026, TamilNadu, India
| | - Koray Sayin
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey; Sivas Cumhuriyet University Advanced Research and Application Center (CUTAM), 58140 Sivas, Turkey.
| | | |
Collapse
|
5
|
Pazhanivel L, Gnanasambandam V. Design and synthesis of benzothiazole/thiophene-4 H-chromene hybrids. RSC Adv 2018; 8:41675-41680. [PMID: 35558789 PMCID: PMC9091940 DOI: 10.1039/c8ra08262f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
A library of 4H-chromene derivatives with heterocyclic substituent's at the 3 and 4-positions was synthesized in a convenient DBU catalysed three component synthesis between salicylaldehyde, acetonitrile derivatives and thiazolidinedione to afford 2-amino-3-benzothiazole-4-heterocycle-4H-chromenes and 2-amino-3-thiophenoyl-4-heterocycle-4H-chromenes derivatives in ethanol and a mixture of ethanol and water (1 : 1) at room temperature. The significance of this protocol is the feasibility of incorporating substituents simultaneously at the 3 and 4 positions of 4H-chromenes in an efficient three component reaction.
Collapse
|