1
|
Madhava Reddy M, Desikan R, Naik S, Kumar S, Kumar D T, Priya Doss C G, Sivaramakrishna A. Designing, Synthesis, and Anti-Breast Cancer Activity of a Series of New Quinazolin-4(1H)-one Derivatives. Chem Biodivers 2022; 19:e202200662. [PMID: 36261320 DOI: 10.1002/cbdv.202200662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 12/27/2022]
Abstract
The inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) protein could be a promising treatment for breast cancer. In this regard, docking studies were accomplished on various functionalized organic molecules. Among them, several derivatives of quinazolin-4(1H)-one exhibited anti-breast cancer activity and satisfied the drug likeliness properties. Further, the in vitro inhibitory studies by a series of 2-(2-phenoxyquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-one molecules showed strong anti-cancer activity than the currently available drug, wortmannin. The MTT cytotoxicity assay was used to predict the anti-proliferative activity of these drugs against MCF-7 cancer cells by inhibiting the PIK3CA protein. The dose-dependent analysis showed a striking decrease in cancer cell viability at 24 h with inhibitory concentrations (IC50 ) of 3b, 3c, 3d, 3f and 3m are 15±1, 17±1, 8±1, 10±1 and 60±1 (nanomoles), respectively. This is the first report in the literature on the inhibition of PIK3CA protein by quinazolinone derivatives that can be used in the treatment of cancer. Quinazolinone analogs have the potential to be safe and economically feasible scaffolds if they are produced using a chemical technique that is both straightforward and amenable to modification. From the cancer research perspective, this study can eventually offer better care for cancer patients.
Collapse
Affiliation(s)
- Manne Madhava Reddy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Rajagopal Desikan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sanjay Naik
- Center for Bioseparation Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sanjit Kumar
- Center for Bioseparation Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumal Kumar D
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Novichikhina NP, Ashrafova ZE, Stolpovskaya NV, Ledenyova IV, Kholyavka MG, Podoplelova NA, Panteleev MA, Shikhaliev KS. Synthesis and properties of novel hybrid molecules bearing 4H-pyrrolo[3,2,1-ij]quinolin-2-one and thiazole moieties. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Zaheer M, Zia-ur-Rehman M, Munir R, Jamil N, Ishtiaq S, Zaib Saleem RS, Elsegood MRJ. (Benzylideneamino)triazole-Thione Derivatives of Flurbiprofen: An Efficient Microwave-Assisted Synthesis and In Vivo Analgesic Potential. ACS OMEGA 2021; 6:31348-31357. [PMID: 34841178 PMCID: PMC8613847 DOI: 10.1021/acsomega.1c05222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Triazole is an imperative heterocycle renowned for its broad-spectrum biological significance. In this manuscript, facile microwave-assisted synthesis of a series of 4-(benzylideneamino)-3-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-1H-1,2,4-triazole-5(4H)-thione 6(a-m) derivatives along with their in vivo analgesic activity is reported. 2-(2-Fluoro-[1,1'-biphenyl]-4-yl)propanoic acid (flurbiprofen) was converted to methyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate using microwave irradiation, followed by its hydrazinolysis with hydrazine monohydrate. 2-(2-Fluoro-[1,1'-biphenyl]-4-yl)propanehydrazide thus obtained was converted to 4-amino-3-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-1H-1,2,4-triazole-5(4H)-thione, followed by its condensation with different aromatic aldehydes to get the title compounds. Structures of all the synthesized compounds were established using different methods (1H NMR and 13C NMR spectroscopies, mass spectrometry, and elemental analysis) and evaluated for their potential as analgesic agents by tail flick, hot plate, and writhing methods. The results of this in vivo study revealed several compounds as potent analgesic agents among which compound 6e showed significant analgesic effect for all the three assays employed.
Collapse
Affiliation(s)
- Muhammad Zaheer
- Applied
Chemistry Research Centre, PCSIR Laboratories
Complex, Lahore 54600 Pakistan
| | | | - Rubina Munir
- Department
of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
| | - Nadia Jamil
- College
of Earth & Environmental Sciences, University
of the Punjab, Quaid-i-Azam Campus, Lahore 54590 Pakistan
| | - Saiqa Ishtiaq
- University
College of Pharmacy, University of Punjab, Lahore 54000, Pakistan
| | - Rahman Shah Zaib Saleem
- Department
of Chemistry and Chemical Engineering, Syed Babar Ali School of Science
and Engineering, Lahore University of Management
Sciences, Lahore 54792, Pakistan
| | | |
Collapse
|
4
|
Mohassab AM, Hassan HA, Abdelhamid D, Gouda AM, Gomaa HA, Youssif BG, Radwan MO, Fujita M, Otsuka M, Abdel-Aziz M. New quinoline/1,2,4-triazole hybrids as dual inhibitors of COX-2/5-LOX and inflammatory cytokines: Design, synthesis, and docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Wang X, Wang A, Qiu L, Chen M, Lu A, Li G, Yang C, Xue W. Expedient Discovery for Novel Antifungal Leads Targeting Succinate Dehydrogenase: Pyrazole-4-formylhydrazide Derivatives Bearing a Diphenyl Ether Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14426-14437. [PMID: 33216530 DOI: 10.1021/acs.jafc.0c03736] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pyrazole-4-carboxamide scaffold containing a flexible amide chain has emerged as the molecular skeleton of highly efficient agricultural fungicides targeting succinate dehydrogenase (SDH). Based on the above vital structural features of succinate dehydrogenase inhibitors (SDHI), three types of novel pyrazole-4-formylhydrazine derivatives bearing a diphenyl ether moiety were rationally conceived under the guidance of a virtual docking comparison between bioactive molecules and SDH. Consistent with the virtual verification results of a molecular docking comparison, the in vitro antifungal bioassays indicated that the skeleton structure of title compounds should be optimized as an N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide scaffold. Strikingly, N'-(4-phenoxyphenyl)-1H-pyrazole-4-carbohydrazide derivatives 11o against Rhizoctonia solani, 11m against Fusarium graminearum, and 11g against Botrytis cinerea exhibited excellent antifungal effects, with corresponding EC50 values of 0.14, 0.27, and 0.52 μg/mL, which were obviously better than carbendazim against R. solani (0.34 μg/mL) and F. graminearum (0.57 μg/mL) as well as penthiopyrad against B. cinerea (0.83 μg/mL). The relative studies on an in vivo bioassay against R. solani, bioactive evaluation against SDH, and molecular docking were further explored to ascertain the practical value of compound 11o as a potential fungicide targeting SDH. The present work provided a non-negligible complement for the structural optimization of antifungal leads targeting SDH.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingling Qiu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Aimin Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Li
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Venkata SRG, C.Narkhede U, Jadhav VD, Naidu CG, Addada RR, Pulya S, Ghosh B. “Quinoline Consists of 1
H
‐1,2,3‐Triazole Hybrids: Design, Synthesis and Anticancer Evaluation”. ChemistrySelect 2019. [DOI: 10.1002/slct.201903938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sivarami Reddy Gangireddy Venkata
- Chemistry ServicesGVK Biosciences Pvt. Ltd, IDA Nacharam Hyderabad - 500076 India
- Department of ChemistryVignan's Foundation for Science, Technology and Research University (VFSTRU), Vadlamudi Guntur - 522213 India
| | - Umesh C.Narkhede
- Chemistry ServicesGVK Biosciences Pvt. Ltd, IDA Nacharam Hyderabad - 500076 India
| | - Vinod. D Jadhav
- Chemistry ServicesGVK Biosciences Pvt. Ltd, IDA Nacharam Hyderabad - 500076 India
| | - Challa Gangu Naidu
- Department of ChemistryVignan's Foundation for Science, Technology and Research University (VFSTRU), Vadlamudi Guntur - 522213 India
| | | | - Sravani Pulya
- Department of PharmacyBirla Institute of Technology and Science, Hyderabad Campus, Shameerpet Hyderabad - 500078 India
| | - Balaram Ghosh
- Department of PharmacyBirla Institute of Technology and Science, Hyderabad Campus, Shameerpet Hyderabad - 500078 India
| |
Collapse
|