Chen J, Li S, Chen Y, Yang J, Dong J. Highly selective detection of adenine and guanine by NH
2-MIL-53(Fe)/CS/MXene nanocomposites with excellent electrochemical performance.
Mikrochim Acta 2022;
189:328. [PMID:
35962293 DOI:
10.1007/s00604-022-05376-5]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Adenine (A) and guanine (G) are mainly found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and play a crucial role in genetic information transfer and protein synthesis. In this study, NH2-MIL-53(Fe)/CS/MXene nanocomposites were prepared for detecting guanine and adenine. With high specific surface area, excellent water dispersion, and numerous active sites, MXene (transition metal carbides, nitrides, and carbonitrides) provides a good platform for loading primitive metal-organic frameworks (MOFs). At the same time, the problem of poor conductivity and dispersion of MOFs is solved. The electrochemical catalytic oxidation of adenine and guanine of NH2-MIL-53 (Fe)/CS/MXene nanocomposites was carried out by differential pulse voltammetry (DPV). Operating voltage of DPV: 0.7-0.9 V (vs. Ag/AgCl) for G, 1.0-1.2 V (vs. Ag/AgCl) for A, 0.8 V (vs. Ag/AgCl), and 1.1 V (vs. Ag/AgCl) for G and A. The concentration ranges for detecting A and G were 3-118 μM and 2-120 μM with detection limits of 0.57 μM and 0.17 μM (S/N = 3), respectively. The nanocomposite was used for detecting G and A in herring sperm DNA, and the content of G and A was found to be about 9 and 11 μM; the RSD values were 3.4 and 1.3%, respectively.
Collapse