1
|
Boron: A key functional component for designing high-performance heterogeneous catalysts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Bac S, Mallikarjun Sharada S. CO Oxidation with Atomically Dispersed Catalysts: Insights from the Energetic Span Model. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Selin Bac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| |
Collapse
|
3
|
Khan AA, Ullah R, Esrafili MD, Ahmad R, Ahmad I. Co Anchored B
36
Cluster as a Novel Single Atom Catalyst for Removing Toxic CO Molecules: A Mechanistic First‐Principles Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Adnan Ali Khan
- Centre for Computational Materials Science University of Malakand Chakdara Pakistan
- Department of Chemistry University of Malakand Chakdara Pakistan
| | - Rahmat Ullah
- Centre for Computational Materials Science University of Malakand Chakdara Pakistan
- Department of Chemistry University of Malakand Chakdara Pakistan
| | - Mehdi D. Esrafili
- Department of Chemistry Faculty of Basic Science University of Maragheh Maragheh Iran
| | - Rashid Ahmad
- Centre for Computational Materials Science University of Malakand Chakdara Pakistan
- Department of Chemistry University of Malakand Chakdara Pakistan
| | - Iftikhar Ahmad
- Centre for Computational Materials Science University of Malakand Chakdara Pakistan
- Department of Physics Gomal University Dera Ismail Khan Pakistan
| |
Collapse
|
4
|
Li M, Li T, Jing Y. Role of sulfur vacancies in MoS 2 monolayers in stabilizing Co atoms for efficient CO oxidation. RSC Adv 2022; 12:31525-31534. [PMID: 36380960 PMCID: PMC9635436 DOI: 10.1039/d2ra06261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
By performing first-principles calculations, a MoS2 monolayer with a Co atom doped at the sulfur defect (Co-SMoS2) was investigated as a single-atom catalyst (SAC) for CO oxidation. The Co atom is strongly constrained at the S-vacancy site of MoS2 without forming clusters by showing a high diffusion energy barrier, ensuring good stability to catalyze CO oxidation. The CO and O2 adsorption behavior on Co-SMoS2 surface and four reaction pathways, namely, the Eley–Rideal (ER), Langmuir–Hinshelwood (LH), trimolecular Eley–Rideal (TER) as well as the New Eley–Rideal (NER) mechanisms are studied to understand the catalytic activity of Co-SMoS2 for CO oxidation. The CO oxidation is more likely to proceed through the LH mechanism, and the energy barrier for the rate-limiting step is only 0.19 eV, smaller than that of noble metal-based SACs. Additionally, the NER mechanism is also favorable with a low energy barrier of 0.26 eV, indicating that the Co-SMoS2 catalyst can effectively promote CO oxidation at low temperatures. Our investigation demonstrates that the S-vacancy of MoS2 plays an important role in enhancing the stability and catalytic activity of Co atoms and Co-SMoS2 is predicted to be a promising catalyst for CO oxidation. Molybdenum disulfide monolayers with Co atoms embedded in the sulfur vacancies are promising two dimensional non-noble metal-based single-atom catalysts to promote carbon monoxide oxidation.![]()
Collapse
Affiliation(s)
- Manman Li
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Shi Q, Yu T, Wu R, Liu J. Metal-Support Interactions of Single-Atom Catalysts for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60815-60836. [PMID: 34913673 DOI: 10.1021/acsami.1c18797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of single-atom catalysts (SACs) has become a rapidly growing research field. It is a critical challenge to understand the interactions between the single-atom metal active sites and the support materials. Recently, original research reports of SACs in biomedical applications have emerged in the literature, yet this topic has seldom been reviewed. Here, this review focuses on the latest advances in single-atom catalysis for biomedical applications and highlights the keys for the design of SACs, such as understanding the interactions between metals and supports and classifying various enzyme-like activities. This review helps bridge the knowledge of multiple disciplines and provides prospects regarding the development of SACs for biomedicine.
Collapse
Affiliation(s)
- Qiaolan Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tianrong Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Renfei Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215006, Jiangsu, P. R. China
| |
Collapse
|
6
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
7
|
Esrafili MD, Mousavian P. Catalytic CO oxidation reaction over N-substituted graphene nanoribbon with edge defects. J Mol Graph Model 2021; 108:108006. [PMID: 34388401 DOI: 10.1016/j.jmgm.2021.108006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
Density functional theory calculations, including dispersion effects, are used to demonstrate how substitutional nitrogen atoms can improve the catalytic reactivity of graphene nanoribbons (GNR) with edge defects in the CO oxidation process. It is demonstrated that the addition of nitrogen impurities significantly enhances O2 adsorption on GNR. Carbon atoms near the edges of defects are the most active sites for capturing O2 molecules. The lower adsorption energy of CO relative to O2 implies that the N-modified GNR is resistant to CO poisoning. The Eley-Rideal (E-R) mechanism has activation energies as low as 0.38 eV, making it the most energetically relevant pathway for the CO + O2 reaction. The findings of this study might help in the design of catalysts for metal-free catalysis of CO oxidation.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| | - Parisasadat Mousavian
- Department of Chemistry, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran; Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
8
|
Esrafili MD, Mousavian P. Catalytic role of B atoms in CO oxidation on B-doped graphene. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Li Z, Wei W, Li H, Li S, Leng L, Zhang M, Horton JH, Wang D, Sun W, Guo C, Wu W, Wang J. Low-Temperature Synthesis of Single Palladium Atoms Supported on Defective Hexagonal Boron Nitride Nanosheet for Chemoselective Hydrogenation of Cinnamaldehyde. ACS NANO 2021; 15:10175-10184. [PMID: 34101427 DOI: 10.1021/acsnano.1c02094] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-support interactions are of great importance in determining the support-activity in heterogeneous catalysis. Here we report a low-temperature synthetic strategy to create atomically dispersed palladium atoms anchored on defective hexagonal boron nitride (h-BN) nanosheet. Density functional theory (DFT) calculations suggest that the nitrogen-containing B vacancy can provide stable anchoring sites for palladium atoms. The presence of single palladium atoms was confirmed by spherical aberration correction electron microscopy and extended X-ray absorption fine structure measurement. This catalyst showed exceptional efficiency in chemoselective hydrogenation of cinnamaldehyde, along with excellent recyclability, sintering-resistant ability, and scalability. We anticipate this synthetic approach for the synthesis of high-quality SACs based on h-BN support is amenable to large-scale production of bench-stable catalysts with maximum atom efficiency for industrial applications.
Collapse
Affiliation(s)
- Zhijun Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
| | - Wei Wei
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
| | - Honghong Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
| | - Shaohan Li
- Jiangsu Province Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing, 211189, PR China
| | - Leipeng Leng
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
| | - Mingyang Zhang
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
| | - J Hugh Horton
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
- Department of Chemistry, Queen's University, Kingston, K7L 3N6, Canada
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Weiwei Sun
- Jiangsu Province Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing, 211189, PR China
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, PR China
| | - Chunmu Guo
- National Center for International Research on Catalytic Technology, Heilongjiang University, Harbin, 150080, PR China
| | - Wei Wu
- National Center for International Research on Catalytic Technology, Heilongjiang University, Harbin, 150080, PR China
| | - Jun Wang
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, PR China
| |
Collapse
|
10
|
Zhang H, Fang S, Hu YH. Recent advances in single-atom catalysts for CO oxidation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1821443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haotian Zhang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, United States
| |
Collapse
|
11
|
Esrafili MD, Heydari S. Si-doped C 3N monolayers as efficient single-atom catalysts for the reduction of N 2O: a computational study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1759830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Safa Heydari
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| |
Collapse
|
12
|
Atomically dispersed palladium catalyses Suzuki-Miyaura reactions under phosphine-free conditions. Commun Chem 2020; 3:43. [PMID: 36703416 PMCID: PMC9814916 DOI: 10.1038/s42004-020-0289-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/02/2020] [Indexed: 01/29/2023] Open
Abstract
Single-atom catalysts have emerged as a new frontier in catalysis science. However, their applications are still limited to small molecule activations in the gas phase, the classic organic transformations catalyzed by single-atom catalysts are still rare. Here, we report the use of a single-atom Pd catalyst for the classic Suzuki-Miyaura carbon-carbon coupling reaction under phosphine-free and open-air conditions at room temperature. The single-atom Pd catalyst is prepared through anchoring Pd on bimetal oxides (Pd-ZnO-ZrO2). The significant synergetic effect of ZnO and ZrO2 is observed. The catalyst exhibits high activity and tolerance of a wide scope of substrates. Characterization demonstrates that Pd single atoms are coordinated with two oxygen atoms in Pd-ZnO-ZrO2 catalyst. The catalyst can be fabricated on a multi-gram scale using a simple in situ co-precipitation method, which endows this catalytic system with great potential in practical applications.
Collapse
|
13
|
Esrafili MD, Heydari S, Dinparast L. A comparative DFT study about surface reactivity and catalytic activity of Pd- and Ni-doped BN nanosheets: NO reduction by CO molecule. Struct Chem 2019. [DOI: 10.1007/s11224-019-01355-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Esrafili MD, Heydari S. An effective approach for tuning catalytic activity of C 3N nanosheets: Chemical-doping with the Si atom. J Mol Graph Model 2019; 92:320-328. [PMID: 31445488 DOI: 10.1016/j.jmgm.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022]
Abstract
It is well-known that the catalytic oxidation of CO molecule into CO2 is one of the most important strategies for the removing of this toxic gas from the atmosphere. In the present study, we investigate the reaction pathways and energy barriers for the oxidation of CO by O2 molecule over the Si-doped C3N nanosheet. According to our results, doping of C3N nanosheet with a Si atom could greatly modify its surface reactivity and electronic structure. Due to the large positive charge on the Si, this atom acts as the most active site to adsorb CO and O2 molecules. Three possible reaction mechanisms are studied for the CO oxidation, namely the Eley-Rideal (ER), Langmuir-Hinshelwood (LH) and new Eley-Rideal (NER). Comparing the activation energies indicates that the CO oxidation reaction proceeds via the LH mechanism over the title surface. The energy barrier needed to remove the activated oxygen atom (O*) from the Si atom is only 0.22 eV, which is most likely to overcome at room temperature. The results of this study may be useful to fabricate noble-metal free catalysts to remove toxic CO molecules from the atmosphere.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran.
| | - Safa Heydari
- Department of Chemistry, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55136-553, Maragheh, Iran
| |
Collapse
|
15
|
Shakerzadeh E, Hamadi H, Esrafili MD. Computational mechanistic insights into CO oxidation reaction over Fe decorated C24N24 fullerene. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Esrafili MD, Heydari S. B-doped C3N monolayer: a robust catalyst for oxidation of carbon monoxide. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2444-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Esrafili MD, Nejadebrahimi B. N2O reduction over a porous Si-decorated carbon nitride fullerene: A DFT study. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.11.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|