Kim TW, Jang YH, Jeong MK, Seo Y, Park CH, Kang S, Lee YJ, Choi JS, Yoon SS, Kim JM. Single-nucleotide polymorphism-based epidemiological analysis of Korean
Mycobacterium bovis isolates.
J Vet Sci 2021;
22:e24. [PMID:
33774940 PMCID:
PMC8007439 DOI:
10.4142/jvs.2021.22.e24]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 11/20/2022] Open
Abstract
Background
Bovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea.
Objectives
To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing.
Methods
A total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs.
Results
We identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes.
Conclusions
Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.
Collapse