1
|
Banerjee B, Priya A, Kaur M, Sharma A, Singh A, Gupta VK, Jaitak V. Sodium Dodecyl Sulphate Catalyzed One-Pot Three-Component Synthesis of Structurally Diverse 2-Amino-3-cyano Substituted Tetrahydrobenzo[b]pyrans and Spiropyrans in Water at Room Temperature. Catal Letters 2023. [DOI: 10.1007/s10562-022-04256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Shirali M, Mirhashemi F. Epoxidation of vinyl cyanides by lithium hypochlorite in the presence of Fe3O4@Ag-CTAB as a new eco-friendly catalyst in aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Kaur M, Priya A, Sharma A, Singh A, Banerjee B. Glycine and its derivatives catalyzed one-pot multicomponent synthesis of bioactive heterocycles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2090262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Manmeet Kaur
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India
| | - Anu Priya
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India
| | - Aditi Sharma
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India
| | - Arvind Singh
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India
| | - Bubun Banerjee
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab, India
| |
Collapse
|
4
|
Kaur G, Kumar R, Saroch S, Gupta VK, Banerjee B. Mandelic Acid: An Efficient Organo-catalyst for the Synthesis of 3-substituted-3- Hydroxy-indolin-2-ones and Related Derivatives in Aqueous Ethanol at Room Temperature. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999200713145440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background:
Indoles and various indolyl derivatives are very common in naturally occurring
biologically active compounds. Many methods are being developed for the synthesis of various
bioactive indole derivatives.
Objective:
Synthesis of biologically promising structurally diverse indole derivatives under mild and
environmentally benign conditions.
Methods:
Synthesis of 3-hydroxy-3-(5-(trifluoromethoxy)-1H-indol-3-yl)indolin-2-one was achieved
by the reaction of an equimolar mixture of isatin and 3-(trifluoromethoxy)-1H-indol using 20 mol% of
mandelic acid as catalyst in aqueous ethanol at room temperature. Under the same optimized reaction
conditions, synthesis of 3-(3-hydroxy-2-oxoindolin-3-yl)chroman-2,4-diones was accomplished via the
reactions of substituted isatins and 4-hydroxycoumarin. On the other hand, 2-hydroxy-2-(indol-3-yl)-
indene-1,3-diones and 10-hydroxy-10-(5-methoxy-1H-indol-3- yl)phenanthren-9(10H)-one were synthesized
from the reactions of indoles and ninhydrin or 9,10-phenanthrenequinone respectively using
the same 20 mol% of mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature.
Results:
Mild, safe and clean reaction profiles, energy efficiency, high atom-economy, use of naturally
occurring non-toxic organo-catalyst, easy isolation procedure by avoiding column chromatographic
purification and gram scale production are some the major advantages of this developed protocol.
Conclusion:
A simple, straightforward and eco-friendly protocol has been developed for the efficient
synthesis of biologically promising novel 3-hydroxy-3-(5-(trifluoromethoxy)-1H-indol- 3-yl)indolin-2-
one, 3-(3-hydroxy-2-oxoindolin-3-yl)chroman-2,4-diones, 2-hydroxy-2-(indol-3- yl)-indene-1,3-diones
and 10-hydroxy-10-(5-methoxy-1H-indol-3-yl)phenanthren-9(10H)-one using a catalytic amount of
mandelic acid in aqueous ethanol at room temperature.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| | - Rajat Kumar
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| | - Shivam Saroch
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu Tawi-180006, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| |
Collapse
|
5
|
Banerjee B. Organocatalyst: A Valuable Tool for the Carbon-carbon and Carbonheteroatom bond Formations. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/221333720801210129105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174507, India
| |
Collapse
|
6
|
Kaur G, Singh A, Kaur N, Banerjee B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1873383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| | - Arvind Singh
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| | - Navdeep Kaur
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Himachal Pradesh, India
| |
Collapse
|
7
|
Banerjee B. Carbon-carbon and Carbon-heteroatom Bond Forming Reactions Under Greener Conditions - Part 2. CURR ORG CHEM 2021. [DOI: 10.2174/138527282501210101161748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry Indus International University V.P.O. Bathu, Distt. Una Himachal Pradesh-174301, India
| |
Collapse
|
8
|
Banerjee B, Kaur G, Kaur N. p-Sulfonic Acid Calix[n]arene Catalyzed Synthesis of Bioactive Heterocycles: A Review. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201019162655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metal-free organocatalysts are becoming an important tool for the sustainable development
of various bioactive heterocycles. On the other hand, during the last two decades,
calix[n]arenes have been gaining considerable attention due to their wide range of applicability
in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n]
arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive
scaffolds. In this review, we have summarized the catalytic efficiency of p-sulfonic
acid calix[n]arenes for the synthesis of diverse, biologically promising scaffolds under various
reaction conditions. There is no such review available in the literature showing the catalytic
applicability of p-sulfonic acid calix[n]arenes. Therefore, it is strongly believed that this
review will surely attract those researchers who are interested in this fascinating organocatalyst.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Navdeep Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
9
|
Kaur G, Moudgil R, Shamim M, Gupta VK, Banerjee B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1870043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Una, India
| | - Radha Moudgil
- Department of Chemistry, Indus International University, Una, India
| | - Mussarat Shamim
- Department of Chemistry, Indus International University, Una, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Tawi, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Una, India
| |
Collapse
|
10
|
Kaur G, Singh D, Singh A, Banerjee B. Camphor sulfonic acid catalyzed facile and general method for the synthesis of 3,3'-(arylmethylene)bis(4-hydroxy-2H-chromen-2-ones), 3,3'-(arylmethylene)bis(2-hydroxynaphthalene-1,4-diones) and 3,3'-(2-oxoindoline-3,3-diyl)bis(2-hydroxynaphthalene-1,4-dione) derivatives at room temperature. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1856877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Bathu, Himachal Pradesh, India
| | - Diksha Singh
- Department of Chemistry, Indus International University, Bathu, Himachal Pradesh, India
| | - Arvind Singh
- Department of Chemistry, Indus International University, Bathu, Himachal Pradesh, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Bathu, Himachal Pradesh, India
| |
Collapse
|
11
|
Singh A, Kaur G, Kaur A, Gupta VK, Banerjee B. A General Method for the Synthesis of 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol-3-yl)(aryl)methanes and tris(indol-3-yl)methanes Using Naturally Occurring Mandelic Acid as an Efficient Organo-catalyst in Aqueous Ethanol at Room Temperature. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107666200228125715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A simple, facile, straightforward and environmentally benign protocol has been developed for the efficient synthesis of pharmaceutically interesting 3,3-bis(indol-3-yl)indolin-2-ones, bis(indol- 3-yl)(aryl)methanes and tris(indol-3-yl)methanes using a catalytic amount of mandelic acid as an efficient, naturally occurring, low-cost, commercially available organo-catalyst in aqueous ethanol at room temperature.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Amninder Kaur
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| | - Vivek K. Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu Tawi-180006, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
12
|
Banerjee B. Carbon-Carbon and Carbon-Heteroatom Bond-forming Reactions under Greener Conditions-Part 1B. CURR ORG CHEM 2020. [DOI: 10.2174/138527282401200305142223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
13
|
Kaur G, Shamim M, Bhardwaj V, Gupta VK, Banerjee B. Mandelic acid catalyzed one-pot three-component synthesis of α-aminonitriles and α-aminophosphonates under solvent-free conditions at room temperature. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1745844] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Mussarat Shamim
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Vaishali Bhardwaj
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Una, Himachal Pradesh, India
| |
Collapse
|
14
|
Banerjee B. Carbon-Carbon and Carbon-Heteroatom Bond-forming Reactions under Greener Conditions-Part 1A. CURR ORG CHEM 2020. [DOI: 10.2174/138527282328200117095904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, V.P.O. Bathu, Distt. Una, Himachal Pradesh-174301, India
| |
Collapse
|
15
|
Banerjee B, Bhardwaj V, Kaur A, Kaur G, Singh A. Catalytic Applications of Saccharin and its Derivatives in Organic Synthesis. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191121144758] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
:
Saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide) is a very mild, cheap,
commercially available, water soluble, environmentally benign and edible Brønsted acidic
substance. Recently, with other utilities, saccharin and its derivatives were employed as
catalysts for various organic transformations. In this review, catalytic applicability of saccharin
and its derivatives under various reaction conditions is summarized.
Collapse
Affiliation(s)
- Bubun Banerjee
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh 174301, India
| | - Vaishali Bhardwaj
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh 174301, India
| | - Amninder Kaur
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh 174301, India
| | - Gurpreet Kaur
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh 174301, India
| | - Arvind Singh
- Department of Chemistry, Indus International University, Village and Post Office Bathu, District Una, Himachal Pradesh 174301, India
| |
Collapse
|