1
|
Mastalir Á, Molnár Á. A Novel Insight into the Ullmann Homocoupling Reactions Performed in Heterogeneous Catalytic Systems. Molecules 2023; 28:molecules28041769. [PMID: 36838755 PMCID: PMC9960315 DOI: 10.3390/molecules28041769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The Ullmann reaction has been reported to be the first cross-coupling reaction performed by using a transition metal catalyst. This reaction has been initially considered as the copper-catalyzed homocoupling of aryl halides, leading to the formation of symmetrical biaryl compounds via the generation of novel C-C bonds. Although this reaction has been extensively studied in recent decades and valuable results have been achieved, there are still considerable efforts focused on the development of novel catalytic systems, mild reaction conditions, and extended substrate scope. The mechanistic aspects of the Ullmann homocoupling reaction have also been investigated, as related to the introduction of new sustainable strategies and green procedures. The application of recyclable heterogeneous catalysts has been found to overcome most of the limitations associated with the harsh reaction conditions of the original Ullmann reaction. More recently, copper-based catalytic systems have also been replaced by palladium nanoparticles, ionic palladium species, gold nanoparticles, and palladium-gold bimetallic systems. In this review, current results reported on the Ullmann homocoupling reaction are discussed, with an emphasis on the development of novel catalytic systems, which can be efficiently used under heterogeneous conditions.
Collapse
|
2
|
Novel palladium tagged ferrite nanoparticle supported ionic liquid phase catalyst for the efficient copper-free Sonogashira coupling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Saranya S, Saranya PV, Anilkumar G. Copper‐Catalyzed Base‐free Protocol for the Sonogashira‐type Coupling of Phenylacetylenes with Boronic Acid Derivatives under Air. ChemistrySelect 2022. [DOI: 10.1002/slct.202202191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University P. D. Hills 686560 Kerala India
| | | | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University P. D. Hills 686560 Kerala India
| |
Collapse
|
4
|
Rajalakshmi C, Krishnan A, Saranya S, Anilkumar G, Thomas VI. A detailed theoretical investigation to unravel the molecular mechanism of the ligand-free copper-catalyzed Suzuki cross-coupling reaction. Org Biomol Chem 2022; 20:4539-4552. [PMID: 35388388 DOI: 10.1039/d2ob00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Suzuki-Miyaura coupling (SMC) represents a very efficacious method for constructing C-C bonds in organic synthesis. The ligand-free variants of SMC have been grabbing attention these days. Despite this momentousness, the mechanistic details of the ligand-free variants are scant in the literature. Herein, we have carried out a detailed mechanistic investigation into the ligand-free Cu-catalyzed SMC of unsaturated organic halides with aryl boronic acid with the aid of density functional theory (DFT) calculations employing the conductor-like polarizable continuum model (CPCM) method. The present study elucidates that in the absence of ancillary ligands on the metal, the substrates, base, and solvent molecules could act as pseudo-ancillary ligands to facilitate the cross-coupling reaction. The investigation further revealed that unsaturated halides like alkynyl halides/vinyl halides could act as good ancillary ligands for copper by forming a Cu-π intermediate and promoting a facile transmetalation process. However, regarding the oxidative addition and reductive elimination steps, a concerted pathway is observed contrary to Pd catalyzed Suzuki coupling, owing to the instability of Cu(III) species and the favourability of Csp2-Csp bond formation. In the whole set of mechanisms explored, oxidative addition/oxidative nucleophilic substitution was the rate-determining step in all the cases. A thermodynamically stable π-coordinated intermediate species where the substrate and base molecule are coordinated to the metal center is identified as the rate-determining species for the ligand-free Suzuki cross-coupling reaction. The presence of the aforesaid intermediate increases the energy span and consequently the activation barrier for the rate-determining step. This study unveiled a theoretical rationale for the high-temperature requirement in the ligand-free Cu-catalyzed SMC reaction.
Collapse
Affiliation(s)
- C Rajalakshmi
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Anandhu Krishnan
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
| | - Salim Saranya
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India.
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, 686560, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| | - Vibin Ipe Thomas
- Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India. .,Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O, Kottayam, Kerala, India 686560
| |
Collapse
|
5
|
Salih KSM. Modern Development in Copper‐ and Nickel‐Catalyzed Cross‐Coupling Reactions: Formation of Carbon‐Carbon and Carbon‐Heteroatom bonds under Microwave Irradiation Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kifah S. M. Salih
- Department of Chemistry and Earth Sciences College of Arts and Sciences Qatar University P.O. Box 2713 Doha (State of Qatar
| |
Collapse
|
6
|
XPS and structural studies of Fe 3O 4-PTMS-NAS@Cu as a novel magnetic natural asphalt base network and recoverable nanocatalyst for the synthesis of biaryl compounds. Sci Rep 2021; 11:24508. [PMID: 34969977 PMCID: PMC8718525 DOI: 10.1038/s41598-021-04111-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022] Open
Abstract
In this research, natural asphalt as a mineral carbonuous material was converted to sodium natural asphalt sulfonate (Na-NAS) and, then, was linked to Fe3O4 MNPs in order to synthesize the magnetic nanocatalyst. Afterwards, Cupper (I) and Cu (II) was grafted on Fe3O4-PTMS-NAS. Moreover, it is worth mentioning that the synthesized the novel magnetic nanocatalyst (Fe3O4-PTMS-NAS@Cu) was successfully used in Suzuki and Stille coupling reactions. The Fe3O4-PTMS-NAS@Cu MNPs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), inductively coupled plasma (ICP), BET and X-ray photoelectron spectroscopy (XPS) analysis. Besides, sulfonation of natural asphalt, magnetization of catalyst, grafting of Cu (I) and Cu (II) to NAS and catalyst formation were investigated and proved carefully. This nanocatalyst can be comfortably separated from the reaction medium through an external magnetic field and can also be recovered and reused, while maintaining its catalytic activity.
Collapse
|
7
|
Rohit KR, Meera G, Anilkumar G. A
solvent‐free manganese(II) ‐catalyzed Clauson‐Kaas
protocol for the synthesis of
N‐aryl
pyrroles under microwave irradiation. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Gopinadh Meera
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam India
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|
8
|
Saranya S, Radhika S, Anilkumar G. Ligand‐ and Base‐Free Cu‐Catalyzed C−N Coupling of Aminoquinolines with Boronic Acids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala 686560 INDIA
| |
Collapse
|
9
|
Sonei S, Taghavi F, Khojastehnezhad A, Gholizadeh M. Copper‐Functionalized Silica‐Coated Magnetic Nanoparticles for an Efficient Suzuki Cross‐Coupling Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202004148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samin Sonei
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Faezeh Taghavi
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Mostafa Gholizadeh
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| |
Collapse
|
10
|
Radhika S, Abdulla CMA, Aneeja T, Anilkumar G. Silver-catalysed C–H bond activation: a recent review. NEW J CHEM 2021. [DOI: 10.1039/d1nj02156g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transition metal catalysed C–H activations are efficient, simple, mild, cost-effective and stereoselective, and many of them are environmentally sustainable transformations.
Collapse
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - C. M. Afsina Abdulla
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
11
|
Abstract
Cross-coupling reactions furnishing carbon–carbon (C–C) and carbon–heteroatom (C–X) bond is one of the most challenging tasks in organic syntheses. The early developed reaction protocols by Ullmann, Ullman–Goldberg, Cadiot–Chodkiewicz, Castro–Stephens, and Corey–House, utilizing elemental copper or its salts as catalyst have, for decades, attracted and inspired scientists. However, these reactions were suffering from the range of functional groups tolerated as well as severely restricted by the harsh reaction conditions often required high temperatures (150–200 °C) for extended reaction time. Enormous efforts have been paid to develop and achieve more sustainable reaction conditions by applying the microwave irradiation. The use of controlled microwave heating dramatically reduces the time required and therefore resulting in increase in the yield as well as the efficiency of the reaction. This review is mainly focuses on the recent advances and applications of copper catalyzed cross-coupling generation of carbon–carbon and carbon–heteroatom bond under microwave technology.
Collapse
|
12
|
Rohit KR, Radhika S, Saranya S, Anilkumar G. Manganese‐Catalysed Dehydrogenative Coupling – An Overview. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901389] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- K. R. Rohit
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Sankaran Radhika
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University Kottayam Kerala 686560 India
| |
Collapse
|
13
|
Kohzadi H, Soleiman-Beigi M. A recyclable heterogeneous nanocatalyst of copper-grafted natural asphalt sulfonate (NAS@Cu): characterization, synthesis and application in the Suzuki–Miyaura coupling reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj01883j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NAS@Cu has synthesis simplicity given the availability of natural materials and has advantages such as being eco-friendly, high reactivity and recyclability.
Collapse
Affiliation(s)
- Homa Kohzadi
- Department of Chemistry
- Faculty of Basic Sciences
- Ilam University
- Ilam
- Iran
| | | |
Collapse
|
14
|
Rohit KR, Saranya S, Harry NA, Anilkumar G. A Novel Ligand‐free Manganese‐catalyzed C‐O Coupling Protocol for the Synthesis of Biaryl Ethers. ChemistrySelect 2019. [DOI: 10.1002/slct.201901031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- K. R. Rohit
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686 560
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686 560
| | - Nissy Ann Harry
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686 560
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686 560
| |
Collapse
|
15
|
Radhika S, Harry NA, Neetha M, Anilkumar G. Recent trends and applications of the Cadiot–Chodkiewicz reaction. Org Biomol Chem 2019; 17:9081-9094. [DOI: 10.1039/c9ob01757g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Cadiot–Chodkiewicz reaction offers an elegant strategy for the formation of 1,3-diynes via Cu-catalyzed cross-coupling of alkynyl halides with terminal alkynes in the presence of an amine.
Collapse
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Nissy Ann Harry
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|