1
|
Gao Y, Zhang D, Zhang S, Li L. Research Advances of Cathode Materials for Rechargeable Aluminum Batteries. CHEM REC 2024; 24:e202400085. [PMID: 39148161 DOI: 10.1002/tcr.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Indexed: 08/17/2024]
Abstract
Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al3+ ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.
Collapse
Affiliation(s)
- Yanhong Gao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
- School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
2
|
Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High Performance and Long-cycle Life Rechargeable Aluminum Ion Battery: Recent Progress, Perspectives and Challenges. CHEM REC 2022; 22:e202200181. [PMID: 36094785 DOI: 10.1002/tcr.202200181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Indexed: 12/14/2022]
Abstract
The rising energy crisis and environmental concerns caused by fossil fuels have accelerated the deployment of renewable and sustainable energy sources and storage systems. As a result of immense progress in the field, cost-effective, high-performance, and long-life rechargeable batteries are imperative to meet the current and future demands for sustainable energy sources. Currently, lithium-ion batteries are widely used, but limited lithium (Li) resources have caused price spikes, threatening progress toward cleaner energy sources. Therefore, post-Li, batteries that utilize highly abundant materials leading to cost-effective energy storage solutions while offering desirable performance characteristics are urgently needed. Aluminum-ion battery (AIB) is an attractive concept that uses highly abundant aluminum while offering a high theoretical gravimetric and volumetric capacity of 2980 mAh g-1 and 8046 mAh cm-3 , respectively. As a result, intensified efforts have been made in recent years to utilize numerous electrolytes, anodes, and cathode materials to improve the electrochemical performance of AIBs, and potentially create high-performance, low-cost, and safe energy storage devices. Herein, recent progress in the electrolyte, anode, and cathode active materials and their utilization in AIBs and their related characteristics are summarized. Finally, the main challenges facing AIBs along with future directions are highlighted.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Aziz Ahmad
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Wei T, Zhang N, Ji Y, Zhang J, Zhu Y, Yi T. Nanosized zinc oxides-based materials for electrochemical energy storage and conversion: Batteries and supercapacitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Zhao Y, Zhang L, Liu J, Adair K, Zhao F, Sun Y, Wu T, Bi X, Amine K, Lu J, Sun X. Atomic/molecular layer deposition for energy storage and conversion. Chem Soc Rev 2021; 50:3889-3956. [PMID: 33523063 DOI: 10.1039/d0cs00156b] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Energy storage and conversion systems, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting, have played vital roles in the reduction of fossil fuel usage, addressing environmental issues and the development of electric vehicles. The fabrication and surface/interface engineering of electrode materials with refined structures are indispensable for achieving optimal performances for the different energy-related devices. Atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques, the gas-phase thin film deposition processes with self-limiting and saturated surface reactions, have emerged as powerful techniques for surface and interface engineering in energy-related devices due to their exceptional capability of precise thickness control, excellent uniformity and conformity, tunable composition and relatively low deposition temperature. In the past few decades, ALD and MLD have been intensively studied for energy storage and conversion applications with remarkable progress. In this review, we give a comprehensive summary of the development and achievements of ALD and MLD and their applications for energy storage and conversion, including batteries, supercapacitors, fuel cells, solar cells, and photoelectrochemical water splitting. Moreover, the fundamental understanding of the mechanisms involved in different devices will be deeply reviewed. Furthermore, the large-scale potential of ALD and MLD techniques is discussed and predicted. Finally, we will provide insightful perspectives on future directions for new material design by ALD and MLD and untapped opportunities in energy storage and conversion.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Mechanical & Materials Engineering, University of Western Ontario, London, ON N6A 5B9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Teng XL, Sun XT, Guan L, Hu H, Wu MB. Self-supported transition metal oxide electrodes for electrochemical energy storage. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42864-020-00068-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Biemolt J, Jungbacker P, van Teijlingen T, Yan N, Rothenberg G. Beyond Lithium-Based Batteries. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E425. [PMID: 31963257 PMCID: PMC7013668 DOI: 10.3390/ma13020425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
We discuss the latest developments in alternative battery systems based on sodium, magnesium, zinc and aluminum. In each case, we categorize the individual metals by the overarching cathode material type, focusing on the energy storage mechanism. Specifically, sodium-ion batteries are the closest in technology and chemistry to today's lithium-ion batteries. This lowers the technology transition barrier in the short term, but their low specific capacity creates a long-term problem. The lower reactivity of magnesium makes pure Mg metal anodes much safer than alkali ones. However, these are still reactive enough to be deactivated over time. Alloying magnesium with different metals can solve this problem. Combining this with different cathodes gives good specific capacities, but with a lower voltage (<1.3 V, compared with 3.8 V for Li-ion batteries). Zinc has the lowest theoretical specific capacity, but zinc metal anodes are so stable that they can be used without alterations. This results in comparable capacities to the other materials and can be immediately used in systems where weight is not a problem. Theoretically, aluminum is the most promising alternative, with its high specific capacity thanks to its three-electron redox reaction. However, the trade-off between stability and specific capacity is a problem. After analyzing each option separately, we compare them all via a political, economic, socio-cultural and technological (PEST) analysis. The review concludes with recommendations for future applications in the mobile and stationary power sectors.
Collapse
Affiliation(s)
- Jasper Biemolt
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Peter Jungbacker
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Tess van Teijlingen
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Ning Yan
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- School of Physics and Technology, Wuhan University, No.299 Bayi Rd. Wuhan 430072, China
| | - Gadi Rothenberg
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Sinha N, Deshpande I, Pakhira S. Substituents Effects of Organic Linkers on Rotational Energy Barriers in Metal‐Organic Frameworks. ChemistrySelect 2019. [DOI: 10.1002/slct.201901278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nilima Sinha
- Discipline of Metallurgy Engineering and Materials Science (MEMS)Indian Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road Indore- 453552, Madhya Pradesh (M.P.) India
| | - Indraneel Deshpande
- Discipline of Metallurgy Engineering and Materials Science (MEMS)Indian Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road Indore- 453552, Madhya Pradesh (M.P.) India
| | - Srimanta Pakhira
- Discipline of Metallurgy Engineering and Materials Science (MEMS)Indian Institute of Technology Indore (IIT Indore), Simrol, Khandwa Road Indore- 453552, Madhya Pradesh (M.P.) India
| |
Collapse
|