1
|
Kassab AE, Gedawy EM, Sayed AS. Fused thiophene as a privileged scaffold: A review on anti-Alzheimer's disease potentials via targeting cholinesterases, monoamine oxidases, glycogen synthase kinase-3, and Aβ aggregation. Int J Biol Macromol 2024; 265:131018. [PMID: 38518928 DOI: 10.1016/j.ijbiomac.2024.131018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aβ) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3β (GSK3-β) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aβ aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| | - Alaa S Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, P.O. Box 11829, Egypt
| |
Collapse
|
2
|
Manzoor S, Almarghalani DA, James AW, Raza MK, Kausar T, Nayeem SM, Hoda N, Shah ZA. Synthesis and Pharmacological Evaluation of Novel Triazole-Pyrimidine Hybrids as Potential Neuroprotective and Anti-neuroinflammatory Agents. Pharm Res 2023; 40:167-185. [PMID: 36376607 PMCID: PMC10964282 DOI: 10.1007/s11095-022-03429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Neuroprotection is a precise target for the treatment of neurodegenerative diseases, ischemic stroke, and traumatic brain injury. Pyrimidine and its derivatives have been proven to use antiviral, anticancer, antioxidant, and antimicrobial activity prompting us to study the neuroprotection and anti-inflammatory activity of the triazole-pyrimidine hybrid on human microglia and neuronal cell model. METHODS A series of novel triazole-pyrimidine-based compounds were designed, synthesized and characterized by mass spectra, 1HNMR, 13CNMR, and a single X-Ray diffraction analysis. Further, the neuroprotective, anti-neuroinflammatory activity was evaluated by cell viability assay (MTT), Elisa, qRT-PCR, western blotting, and molecular docking. RESULTS The molecular results revealed that triazole-pyrimidine hybrid compounds have promising neuroprotective and anti-inflammatory properties. Among the 14 synthesized compounds, ZA3-ZA5, ZB2-ZB6, and intermediate S5 showed significant anti-neuroinflammatory properties through inhibition of nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in LPS-stimulated human microglia cells. From 14 compounds, six (ZA2 to ZA6 and intermediate S5) exhibited promising neuroprotective activity by reduced expression of the endoplasmic reticulum (ER) chaperone, BIP, and apoptosis marker cleaved caspase-3 in human neuronal cells. Also, a molecular docking study showed that lead compounds have favorable interaction with active residues of ATF4 and NF-kB proteins. CONCLUSION The possible mechanism of action was observed through the inhibition of ER stress, apoptosis, and the NF-kB inflammatory pathway. Thus, our study strongly indicates that the novel scaffolds of triazole-pyrimidine-based compounds can potentially be developed as neuroprotective and anti-neuroinflammatory agents.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India, 110025
| | - Daniyah A Almarghalani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Tasneem Kausar
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, India, 110025.
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
3
|
Synthesis and Antimicrobial Evaluation of 2-(6-Imidazo[1,2-a]pyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3,4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide Derivatives. MOLBANK 2022. [DOI: 10.3390/m1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
6-Heteryl-5-methylthieno[2,3-d]pyrimidin-2,4(1H,3H)-diones are of great interest as the promising objects for the search of antibacterials. In this communication, we obtained 6-(imidazo[1,2-a]pyridin-2-yl)-5-methyl-3-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione by interaction of 6-(bromoacetyl)-5-methyl-3-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dione with 2-aminopyridine. The obtained heterocyclic hybrid was further modified by alkylation with 2-chloroarylacetamides. Antimicrobial activity studies for the synthesized compounds using the agar well diffusion method revealed their moderate activity against S. aureus, E. coli and B. subtilis. According to the double dilution assay MIC value results for 6-(imidazo[1,2-a]pyridin-2-yl)-5-methyl-3-phenylthieno[2,3-d]pyrimidine-2,4(1H,3H)-dioneagainst P. aeruginosa was less than the value determined for the reference drug streptomycin. The docking study of the synthesized compounds to the active site of TrmD isolated from P. aeruginosa did not show their effective inhibitory activity.
Collapse
|
4
|
Suryanarayana K, Maddila S, Nagaraju K, Jonnalagadda SB. Design, synthesis, docking study and biological evaluation of novel thieno[2,3-d]-pyrimidine tethered 1,2,3-triazole scaffolds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Sci Pharm 2021. [DOI: 10.3390/scipharm89040049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The rapid development in bacterial resistance to many groups of known antibiotics forces the researchers to discover antibacterial drug candidates with previously unknown mechanisms of action, one of the most relevant being the inhibition of tRNA (Guanine37-N1)-methyltransferase (TrmD). The discovery of selective TrmD inhibitors in the series of carboxamide derivatives of thienopyrimidines became a background for further modification of the similar structures aimed at the development of promising antibacterial agents. As part of this research, we carried out the construction of heterocyclic hybrids bearing the moieties of thieno[2,3-d]pyrimidine and benzimidazole starting from 3,5-dimethyl-4-oxo-2-thioxo-1H-thieno[2,3-d]pyrimidine-6-carboxylic acid, which was used as the pivotal intermediate. The hybrid molecule of 6-(1H-benzimidazol-2-yl)-3,5-dimethyl-2-thioxo-1H-thieno[2,3-d]pyrimidin-4-one prepared via condensation of the carboxylic acid with ortho-phenylenediamine was further alkylated with aryl/hetaryl chloroacetamides and benzyl chloride to produce the series of S-alkyl derivatives. The results of molecular docking studies for the obtained series of S-alkyl benzimidazole-thienopyrimidines showed their high affinity to the TrmD isolated from the P. aeruginosa. The results of antimicrobial activity screening revealed the antimicrobial properties for all of the studied molecules against both Gram-positive and Gram-negative bacteria and the Candida albicans fungal strain. The highest antimicrobial activity was determined for 2-{[6-(1H-benzimidazol-2-yl)-3,5-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl]thio}-N-(4-isopropylphenyl)acetamide, which also had the highest affinity to the TrmD inhibitor’s binding site according to the docking studies results.
Collapse
|
6
|
Olar R, Badea M, Maxim C, Grumezescu AM, Bleotu C, Măruţescu L, Chifiriuc MC. Anti-biofilm Fe 3O 4@C 18-[1,3,4]thiadiazolo[3,2- a]pyrimidin-4-ium-2-thiolate Derivative Core-shell Nanocoatings. MATERIALS 2020; 13:ma13204640. [PMID: 33080907 PMCID: PMC7603173 DOI: 10.3390/ma13204640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023]
Abstract
The derivatives 5,7-dimethyl[1,3,4]thiadiazolo[3,2-a]pyrimidin-4-ium-2-thiolate (1) and 7-methyl-5-phenyl[1,3,4]thiadiazolo[3,2-a]pyrimidin-4-ium-2-thiolate (2) were fully characterized by single-crystal X-ray diffraction. Their supramolecular structure is built through both π–π stacking and C=S–π interactions for both compounds. The embedment of the tested compounds into Fe3O4@C18 core-shell nanocoatings increased the protection degree against Candida albicans biofilms on the catheter surface, suggesting that these bioactive nanocoatings could be further developed as non-cytotoxic strategies for fighting biofilm-associated fungal infections.
Collapse
Affiliation(s)
- Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania; (M.B.); (C.M.)
- Correspondence: (R.O.); (M.C.C.)
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania; (M.B.); (C.M.)
| | - Cătălin Maxim
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., 050663 Bucharest, Romania; (M.B.); (C.M.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania;
| | - Coralia Bleotu
- Stefan S Nicolau Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania;
| | - Luminiţa Măruţescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor St., 60101 Bucharest, Romania;
- Environment and Earth Sciences Department, Research Institute of the University of Bucharest—ICUB, Splaiul Independenţei 91–95, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor St., 60101 Bucharest, Romania;
- Environment and Earth Sciences Department, Research Institute of the University of Bucharest—ICUB, Splaiul Independenţei 91–95, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Correspondence: (R.O.); (M.C.C.)
| |
Collapse
|
7
|
Musthafa M, Konakanchi R, Ganguly R, Sreekanth A. Novel dibenzosuberene substituted aroyl selenoureas: Synthesis, crystal structure, DFT, molecular docking and biological studies. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1699924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Moideen Musthafa
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, India
| | - Ramaiah Konakanchi
- Chemistry Division, H&S Department, Vignan Institute of Technology and Science, Deshmuki, Hyderabad, India
| | - Rakesh Ganguly
- Division of Chemistry & Biological Chemistry, Nanyang Technological University, Singapore, Singapore
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, India
| |
Collapse
|