1
|
Pocock E, Diefenbach M, Hood TM, Nunn M, Richards E, Krewald V, Webster RL. Synthetic and Mechanistic Studies into the Reductive Functionalization of Nitro Compounds Catalyzed by an Iron(salen) Complex. J Am Chem Soc 2024; 146:19839-19851. [PMID: 38995168 PMCID: PMC11273354 DOI: 10.1021/jacs.4c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
We report on the use of a simple, bench-stable [Fe(salen)2]-μ-oxo precatalyst in the reduction of nitro compounds. The reaction proceeds at room temperature across a range of substrates, including nitro aromatics and aliphatics. By changing the reducing agent from pinacol borane (HBpin) to phenyl silane (H3SiPh), we can chemoselectively reduce nitro compounds while retaining carbonyl functionality. Our mechanistic studies, which include kinetics, electron paramagnetic resonance (EPR), mass spectrometry, and quantum chemistry, indicate the presence of a nitroso intermediate and the generation of an on-cycle iron hydride as a key catalytic intermediate. Based on this mechanistic insight, we were able to extend the chemistry to hydroamination and identified a simple substrate feature (alkene lowest unoccupied molecular orbital (LUMO) energy) that could be used to predict which alkenes would result in productive catalysis.
Collapse
Affiliation(s)
- Emily Pocock
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Thomas M. Hood
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Michael Nunn
- Early
Chemical Development, Pharmaceutical Sciences,
Biopharmaceuticals R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Emma Richards
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Vera Krewald
- Department
of Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Ruth L. Webster
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
2
|
Chen W, Chen K, Wang X, Yang L, Chen W. Pd/NHC catalyzed reduction and coupling of nitroaromatics for the synthesis of diarylamines. RSC Adv 2024; 14:16624-16628. [PMID: 38784423 PMCID: PMC11110159 DOI: 10.1039/d4ra00921e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Herein, we report a one-pot approach to diarylamines through the reductive homocoupling of nitroaromatics, employing triethylsilane as the reducing agent and Pd/NHC as the catalyst. This method enables nitroaromatics to serve both as electrophilic reagents and as precursors of nucleophilic reagents, allowing for the direct preparation of diarylamines without the need to isolate aromatic primary amines.
Collapse
Affiliation(s)
- Wei Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou China
| | - Kai Chen
- Department of Chemistry, Zhejiang University Hangzhou China
| | - Xuejie Wang
- Department of Chemistry, Zhejiang University Hangzhou China
| | - Linjie Yang
- Department of Chemistry, Zhejiang University Hangzhou China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University Hangzhou China
| |
Collapse
|
3
|
Yuan Y, Huang Q, Darcel C. Blue-Light Driven Iron-Catalyzed Oxy-phosphinylation of Activated Alkenes for β-Ketophosphine Oxide Synthesis. Chemistry 2023:e202302358. [PMID: 37681747 DOI: 10.1002/chem.202302358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
We have developed an original blue-light mediated iron-catalyzed oxy-phosphinylation of activated alkenes by secondary phosphine oxides under air at room temperature. Various β-ketophosphine oxides were then obtained in 43-97 % isolated yields. Control experiments revealed that radical process is involved in the mechanism.
Collapse
Affiliation(s)
- Yumeng Yuan
- CNRS, ISCR UMR 6226, Univ. Rennes, F 35000, Rennes, France
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | - Qiufeng Huang
- College of Chemistry & Materials Science, Fujian Normal University, 350007, Fuzhou, P. R. China
| | | |
Collapse
|
4
|
Boumekla Y, Xia F, Vidal L, Totée C, Raynaud C, Ouali A. Calcium-catalysed synthesis of amines through imine hydrosilylation: an experimental and theoretical study. Org Biomol Chem 2023; 21:1038-1045. [PMID: 36625298 DOI: 10.1039/d2ob02243e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A method to reduce aldimines through hydrosilylation is reported. The catalytic system involves calcium triflimide (Ca(NTf2)2) and potassium hexafluorophosphate (KPF6) which have been shown to act in a synergistic manner. The expected amines are obtained in fair to very high yields (40-99%) under mild conditions (room temperature in most cases). To illustrate the potential of this method, a bioactive molecule with antifungal properties was prepared on the gram scale and in high yield in environmentally friendly 2-methyltetrahydrofuran. Moreover, it is shown in this example that the imine can be prepared in situ from the aldehyde and the amine without isolating the imine. The mechanism involved has been explored experimentally and through DFT calculations, and the results are in accordance with an electrophilic activation of the silane by the calcium catalyst.
Collapse
Affiliation(s)
| | - Fengjie Xia
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lucas Vidal
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Cédric Totée
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Armelle Ouali
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
5
|
Luo J, Cui C, Xiao Z, Zhong W, Lu C, Jiang X, Li X, Liu X. Iron(0) tricarbonyl η 4-1-azadiene complexes and their catalytic performance in the hydroboration of ketones, aldehydes and aldimines via a non-iron hydride pathway. Dalton Trans 2022; 51:11558-11566. [PMID: 35848404 DOI: 10.1039/d2dt01673g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six iron(0) tricarbonyl complexes (1a-f) with a η4-1-azadiene moiety were prepared and their performance in the hydroboration of unsaturated organic compounds was investigated. All the complexes exhibit catalytic activity towards hydroboration of ketones, aldehydes and aldimines with pinacolborane (HBpin) as a hydride source to lead to secondary alcohols, primary alcohols, and secondary amines, respectively, after hydrolysis of the hydroboration products. Of the iron(0) tricarbonyl complexes, complex 1e is the most robust one and was employed throughout the catalytic investigation. Its preference towards the three types of substrates is as follows: aldimines > aldehydes ≫ ketones. In total, 24 substrates were examined for the catalytic hydroboration reactivity and generally, isolation yields ranging from 40% to 95% were achieved. Mechanistic investigation suggests that the catalytic hydroboration of the substrates proceeds via intramolecular hydride transfer without going through an Fe-H intermediate. As indicated by 1H NMR spectroscopic monitoring, the substrates and the borane agent bind to the iron centre and the imine N atom, respectively, which facilitates the hydride transfer by activating the B-H bond and polarizing the double bond of the substrates.
Collapse
Affiliation(s)
- Jiabin Luo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chuanguo Cui
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Zhiyin Xiao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Wei Zhong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiujuan Jiang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xueming Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
6
|
Wu J, Darcel C. Tandem Fe/Zn or Fe/In catalysis for the selective synthesis of primary and secondary amines via selective reduction of primary amides. ChemCatChem 2022. [DOI: 10.1002/cctc.202101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiajun Wu
- Universite de Rennes 1 Institut des Sciences Chimiques de Rennes, OMC team 263 aveneue fu Général LeclercBat 10C 35042 Rennes FRANCE
| | - Christophe Darcel
- Universite de Rennes 1 Institut des Sciences Chimiques de Rennes Avenue du Général LeclercCampus de Beaulieu, Bat 10C, bureau 040 35000 Rennes FRANCE
| |
Collapse
|
7
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
8
|
Bories CC, Barbazanges M, Derat E, Petit M. Implication of a Silyl Cobalt Dihydride Complex as a Useful Catalyst for the Hydrosilylation of Imines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cassandre C. Bories
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marion Barbazanges
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marc Petit
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
9
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Wu J, Tongdee S, Ammaiyappan Y, Darcel C. A Concise Route to Cyclic Amines from Nitroarenes and Ketoacids under Iron‐Catalyzed Hydrosilylation Conditions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajun Wu
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Satawat Tongdee
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Yuvaraj Ammaiyappan
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Christophe Darcel
- UnivRennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| |
Collapse
|
11
|
Kang QQ, Meng YN, Zhang JH, Li L, Ge GP, Zheng H, Liu H, Wei WT. Iron-catalyzed oxidative cyclization of olefinic 1,3-dicarbonyls with ketone C(sp 3)–H bonds: facile access to 2,3-dihydrofurans. NEW J CHEM 2021. [DOI: 10.1039/d1nj02378k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reaction involves the addition of an α-carbonyl radical to the CC bond of olefinic 1,3-dicarbonyls followed by intramolecular 5-endo-trig cyclization.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Ya-Nan Meng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Jun-Hao Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Long Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Hongxin Liu
- College of Chemistry and Materials Engineering
- Institute of New Materials & Industrial Technology
- Wenzhou University
- Wenzhou
- China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo
| |
Collapse
|
12
|
Saito K, Ito T, Arata S, Sunada Y. Four‐Coordinated Manganese(II) Disilyl Complexes for the Hydrosilylation of Aldehydes and Ketones with 1,1,3,3‐Tetramethyldisiloxane. ChemCatChem 2020. [DOI: 10.1002/cctc.202001522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kyoka Saito
- Department of Applied Chemistry Faculty of Science and Engineering Chuo University 1-13-27 Kasuga Bunkyo-ku Tokyo Japan
| | - Tatsuyoshi Ito
- Kanagawa Institute of Industrial Science and Technology (KISTEC) 4-6-1 Komaba Meguro-ku Tokyo Japan
| | - Shogo Arata
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
| | - Yusuke Sunada
- Department of Applied Chemistry School of Engineering The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba Meguro-ku Tokyo Japan
| |
Collapse
|
13
|
Wei D, Netkaew C, Wu J, Darcel C. Iron‐catalyzed hydrosilylation of diacids in the presence of amines: a new route to cyclic amines. ChemCatChem 2020. [DOI: 10.1002/cctc.202000881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS, ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Chakkrit Netkaew
- Univ Rennes, CNRS, ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Jiajun Wu
- Univ Rennes, CNRS, ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| | - Christophe Darcel
- Univ Rennes, CNRS, ISCR Institut des Sciences Chimiques de Rennes) UMR 6226 F-35000 Rennes France
| |
Collapse
|
14
|
Hayrapetyan D, Khalimon AY. Catalytic Nitrile Hydroboration: A Route to N,N-Diborylamines and Uses Thereof. Chem Asian J 2020; 15:2575-2587. [PMID: 32627941 DOI: 10.1002/asia.202000672] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/03/2020] [Indexed: 01/02/2023]
Abstract
Catalytic reduction of nitriles is considered as an attractive and atom-economical route to a diversity of synthetically valuable primary amines. Compared to other methods, dihydroboration approach has been developed relatively recently but has already attracted the attention of many research groups due to reasonably mild reaction conditions, selectivity control and the access to N,N-diborylamines, which emerged as powerful reagents for C-N bond forming reactions. Early developments in catalytic dihydroboration of nitriles implied precious metal catalysts along with harsh conditions and prolonged reaction times, whereas recent advances mostly rely on base and main group metal catalytic systems with significantly improved profiles. This minireview aims to provide an overview of advances and challenges of dihydroboration of nitriles with d-, f- and main group metal catalysts. Mechanistic features of different catalytic systems, functional group tolerance and scope of the methods are also presented. The synthetic utility of N,N-diborylamies, beyond simple protodeborylation, is discussed in the aspect of N-arylation, imine and amide synthesis.
Collapse
Affiliation(s)
- Davit Hayrapetyan
- Department of Chemistry School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan
| | - Andrey Y Khalimon
- Department of Chemistry School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan.,The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
15
|
Liu Y, Xia Y, Cui S, Ji Y, Wu L. Palladium‐Catalyzed Cascade Hydrosilylation and Amino‐Methylation of Isatin Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun‐Tao Xia
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Su‐Hang Cui
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yi‐Gang Ji
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- Jiangsu Key Laboratory of Biofunctional Molecules, Department of Life Sciences and ChemistryJiangsu Second Normal University Nanjing 210013 People's Republic of China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
16
|
Shaikh NS, Kushalappa YM, Sheshappa SP, Nagaraju HH. Iron‐Catalyzed Crossed‐Aldol Condensation for the Synthesis of 3‐Benzylidene‐4‐chromanones: An Efficient Synthesis of Homoisoflavanoids
†. ChemistrySelect 2019. [DOI: 10.1002/slct.201903862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nadim S. Shaikh
- Drug Discovery Facility-Pune, Advinus Therapeutics LimitedHead Office: Block No. 21 & 22, Phase IIPeenya Industrial Area Bangalore 560058 India
| | - Yeshma M. Kushalappa
- Drug Discovery Facility-Pune, Advinus Therapeutics LimitedHead Office: Block No. 21 & 22, Phase IIPeenya Industrial Area Bangalore 560058 India
| | - Swathi P. Sheshappa
- Drug Discovery Facility-Pune, Advinus Therapeutics LimitedHead Office: Block No. 21 & 22, Phase IIPeenya Industrial Area Bangalore 560058 India
| | - Hareesh H. Nagaraju
- Drug Discovery Facility-Pune, Advinus Therapeutics LimitedHead Office: Block No. 21 & 22, Phase IIPeenya Industrial Area Bangalore 560058 India
| |
Collapse
|
17
|
Roscales S, Csáky AG. Transition‐Metal‐Free Three‐Component Synthesis of Tertiary Aryl Amines from Nitro Compounds, Boronic Acids, and Trialkyl Phosphites. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Silvia Roscales
- Instituto PluridisciplinarUniversidad Complutense de Madrid Paseo de Juan XXIII, 1 28040 Madrid Spain
| | - Aurelio G. Csáky
- Instituto PluridisciplinarUniversidad Complutense de Madrid Paseo de Juan XXIII, 1 28040 Madrid Spain
| |
Collapse
|
18
|
Das S, Das HS, Singh B, Haridasan RK, Das A, Mandal SK. Catalytic Reduction of Nitriles by Polymethylhydrosiloxane Using a Phenalenyl-Based Iron(III) Complex. Inorg Chem 2019; 58:11274-11278. [DOI: 10.1021/acs.inorgchem.9b01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shyamal Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Hari Sankar Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Bhagat Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Rahul Koottanil Haridasan
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Swadhin K. Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| |
Collapse
|