1
|
Savin AV, Kivshar YS. Chiral organic molecular structures supported by planar surfaces. J Chem Phys 2023; 159:214306. [PMID: 38054512 DOI: 10.1063/5.0174859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
We employ the molecular dynamics simulations to study the dynamics of acetanilide (ACN) molecules placed on a flat surface of planar multilayer hexagonal boron nitride. We demonstrate that the ACN molecules, known to be achiral in the three-dimensional space, become chiral after being placed on the substrate. Homochirality of the ACN molecules leads to stable secondary structures stabilized by hydrogen bonds between peptide groups of the molecules. By employing molecular dynamics simulations, we reveal that the structure of the resulting hydrogen-bond chains depends on the isomeric composition of the molecules. If all molecules are homochiral (i.e., with only one isomer being present), they form secondary structures (chains of hydrogen bonds in the shapes of arcs, circles, and spirals). If the molecules at the substrate form a racemic mixture, then no regular secondary structures appear, and only curvilinear chains of hydrogen bonds of random shapes emerge. A hydrogen-bond chain can form a zigzag array only if it has an alternation of isomers. Such chains can create two-dimensional (2D) regular lattices or 2D crystals. The melting scenarios of such 2D crystals depend on density of its coverage of the substrate. At 25% coverage, melting occurs continuously in the temperature interval 295-365 K. For a complete coverage, melting occurs at 415-470 K due to a shift of 11% of all molecules into the second layer of the substrate.
Collapse
Affiliation(s)
- Alexander V Savin
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Plekhanov Russian University of Economics, Moscow 117997, Russia
| | - Yuri S Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
2
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
3
|
Khan SA, Abbasi N, Hussain D, Khan TA. Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8280-8295. [PMID: 35758902 DOI: 10.1021/acs.langmuir.2c00702] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the present investigation, a novel, green, and economical dual-functionalized pullulan/kaolin hydrogel nanocomposite (f-PKHN) was fabricated and subsequently applied for the liquid-phase decontamination of paracetamol (PCT), a pharmaceutical pollutant. Pullulan and kaolin were functionalized with l-asparagine and gallic acid, respectively. The physicochemical facets of the functionalized pullulan/kaolin hydrogel nanocomposite and its interactive behavior with PCT were elucidated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), and elemental mapping. The process parameters along with the isotherm, kinetics, and thermodynamics were methodically appraised via a batch technique to unveil the adsorption performance of the as-fabricated hydrogel nanocomposite. The adsorption isotherm and kinetics of PCT uptake by f-PKHN conform well to Freundlich and pseudo-second-order models, respectively. Relying on hydrogen bonding, n-π, and van der Waals interactions, the maximum adsorption capacity was 332.54 mg g-1, higher than for most of the previous adsorbents reported in the literature for PCT removal. Thermodynamic calculations corroborated endothermic, spontaneous, and feasible adsorption phenomena. The maintenance of a high uptake percentage (69.11%) in the fifth consecutive adsorption-desorption cycle implied the significant reusable potential of f-PKHN. Swelling studies exhibited 90% swelling within 200 min, indicating the successful fabrication of a cross-linked hydrogel network. The real water (distilled water, tap water, and river water) samples spiked with PCT specified a significant uptake of PCT (>85%), and the minor influence of ionic strength on the adsorptive potential of f-PKHN validated its potentiality for the decontamination of real effluents. In conclusion, f-PKHN with substantial adsorption capacity, green characteristics, and excellent reusability can be reckoned with as a promising adsorbent for the de-escalation of PCT from aquatic sources as well as at the industrial level.
Collapse
Affiliation(s)
- Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Neha Abbasi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Daud Hussain
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| |
Collapse
|
4
|
Betulinic acid and 3-o-acetyl-betulinic acid interactions with external and internal surface of boron-nitride nanotubes: A DFT and MD investigation. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Maharjan S, Gautam M, Poudel K, Yong CS, Ku SK, Kim JO, Byeon JH. Streamlined plug-in aerosol prototype for reconfigurable manufacture of nano-drug delivery systems. Biomaterials 2022; 284:121511. [DOI: 10.1016/j.biomaterials.2022.121511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
|
6
|
Turhan EA, Pazarçeviren AE, Evis Z, Tezcaner A. Properties and applications of boron nitride nanotubes. NANOTECHNOLOGY 2022; 33:242001. [PMID: 35203072 DOI: 10.1088/1361-6528/ac5839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Nanomaterials have received increasing attention due to their controllable physical and chemical properties and their improved performance over their bulk structures during the last years. Carbon nanostructures are one of the most widely searched materials for use in different applications ranging from electronic to biomedical because of their exceptional physical and chemical properties. However, BN nanostructures surpassed the attention of the carbon-based nanostructure because of their enhanced thermal and chemical stabilities in addition to structural similarity with the carbon nanomaterials. Among these nanostructures, one dimensional-BN nanostructures are on the verge of development as new materials to fulfill some necessities for different application areas based on their excellent and unique properties including their tunable surface and bandgap, electronic, optical, mechanical, thermal, and chemical stability. Synthesis of high-quality boron nitride nanotubes (BNNTs) in large quantities with novel techniques provided greater access, and increased their potential use in nanocomposites, biomedical fields, and nanodevices as well as hydrogen uptake applications. In this review, properties and applications of one-dimensional BN (1D) nanotubes, nanofibers, and nanorods in hydrogen uptake, biomedical field, and nanodevices are discussed in depth. Additionally, research on native and modified forms of BNNTs and also their composites with different materials to further improve electronic, optical, structural, mechanical, chemical, and biological properties are also reviewed. BNNTs find many applications in different areas, however, they still need to be further studied for improving the synthesis methods and finding new possible future applications.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Material Science and Engineering, Koç University, İstanbul, Turkey
| | | | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| |
Collapse
|
7
|
Zarghami Dehaghani M, Yousefi F, Bagheri B, Seidi F, Hamed Mashhadzadeh A, Rabiee N, Zarrintaj P, Mostafavi E, Saeb MR, Kim YC. α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. Int J Nanomedicine 2021; 16:4277-4288. [PMID: 34194228 PMCID: PMC8238539 DOI: 10.2147/ijn.s313855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Antimicrobial peptides are potential therapeutics as anti-bacteria, anti-viruses, anti-fungi, or anticancers. However, they suffer from a short half-life and drug resistance which limit their long-term clinical usage. Methods Herein, we captured the encapsulation of antimicrobial peptide HA-FD-13 into boron nitride nanotube (BNNT) (20,20) and its release due to subsequent insertion of BNNT (14,14) with molecular dynamics simulation. Results The peptide-BNNT (20,20) van der Waals (vdW) interaction energy decreased to −270 kcal·mol−1 at the end of the simulation (15 ns). However, during the period of 0.2–1.8 ns, when half of the peptide was inside the nanotube, the encapsulation was paused due to an energy barrier in the vicinity of BNNT and subsequently the external intervention, such that the self-adjustment of the peptide allowed full insertion. The free energy of the encapsulation process was −200.12 kcal·mol−1, suggesting that the insertion procedure occurred spontaneously. Discussion Once the BNNT (14,14) entered into the BNNT (20,20), the peptide was completely released after 83.8 ps. This revealed that the vdW interaction between the BNNT (14,14) and BNNT (20,20) was stronger than between BNNT (20,20) and the peptide; therefore, the BNNT (14,14) could act as a piston pushing the peptide outside the BNNT (20,20). Moreover, the sudden drop in the vdW energy between nanotubes to the value of the −1300 Kcal·mol−1 confirmed the self-insertion of the BNNT (14,14) into the BNNT (20,20) and correspondingly the release of the peptide.
Collapse
Affiliation(s)
- Maryam Zarghami Dehaghani
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
| | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Amin Hamed Mashhadzadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-3516, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|
8
|
Anandhan SV, Krishnan UM. Boron nitride nanotube scaffolds: emergence of a new era in regenerative medicine. Biomed Mater 2021; 16. [PMID: 33770776 DOI: 10.1088/1748-605x/abf27d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/26/2021] [Indexed: 12/24/2022]
Abstract
Tissue engineering scaffolds have transformed from passive geometrical supports for cell adhesion, extension and proliferation to active, dynamic systems that can in addition, trigger functional maturation of the cells in response to external stimuli. Such 'smart' scaffolds require the incorporation of active response elements that can respond to internal or external stimuli. One of the key elements that direct the cell fate processes is mechanical stress. Different cells respond to various types and magnitudes of mechanical stresses. The incorporation of a pressure-sensitive element in the tissue engineering scaffold therefore, will aid in tuning the cell response to the desired levels. Boron nitride nanotubes (BNNTs) are analogous to carbon nanotubes and have attracted considerable attention due to their unique amalgamation of chemical inertness, piezoelectric property, biocompatibility and, thermal and mechanical stability. Incorporation of BNNTs in scaffolds confers them with piezoelectric property that can be used to stimulate the cells seeded on them. Biorecognition and solubilization of BNNTs can be engineered through surface functionalization with different biomolecules. Over the years, the importance of BNNT has grown in the realm of healthcare nanotechnology. This review discusses the salient properties of BNNTs, the influence of functionalization on theirin vitroandin vivobiocompatibility, and the uniqueness of BNNT-incorporated tissue engineering scaffolds.
Collapse
Affiliation(s)
- Sathyan Vivekanand Anandhan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.,School of Arts, Science and Humanities, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| |
Collapse
|
9
|
Theoretical studies of the paracetamol and phenacetin adsorption on single-wall boron-nitride nanotubes: a DFT and MD investigation. Struct Chem 2020. [DOI: 10.1007/s11224-020-01499-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|