1
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
2
|
Rostami M, Farajollahi AH, Amirkhani R, Farshchi ME. A review study on methanol steam reforming catalysts: Evaluation of the catalytic performance, characterizations, and operational parameters. AIP ADVANCES 2023; 13:030701. [DOI: 10.1063/5.0137706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/26/2023] [Indexed: 08/28/2023]
Abstract
Conventional fossil-based energy sources have numerous environmental demerits; sustainable and renewable sources are attracting the undivided attention of researchers owing to their valuable physical and chemical features. Several industrial-scale technologies are employing hydrogen as a green energy source as the most preferential source. Not only is hydrogen a potent energy carrier but also it is not detrimental to the environment. Among many other hydrogen production processes, steam reforming of methanol (SRM) is deemed a practical method due to its low energy consumption. Cu, Ni, noble metals, etc., are the salient catalysts in SRM. Many researchers have conducted thorough studies incorporating improvement of the catalysts’ activity, mechanism predictions, and the impacts of operational parameters and reformers. This review concentrates on the SRM catalysts, supports, promoters, and the effect of the operational parameters on the process efficiency and H2 production yield. In this regard, the methanol conversion, H2 and CO selectivity, and operating parameters are notably contingent on the surface characterization and chemistry of the catalysts. Herein, Cu-, Ni-, and noble metal-based catalysts on various metal oxide supports, such as Al2O3 and ZnO, are assessed meticulously in the SRM process from the standpoint of mechanism and catalyst characterization. Most of the peer-reviewed studies had encountered agglomeration, metal particle sintering at high temperatures, coke formation, and deactivation of catalysts as the prevalent barriers. Hence, the novel methods of conquering the above-mentioned obstacles are evaluated in this review. Employment of diverse synthetic methods, bimetallic catalysts, distinct catalyst promoters, and unconventional supports, such as metal–organic frameworks, carbon nanotubes, and zeolites, are the salient routes to overcome the metal dispersion and thermal stability issues. In addition, the influence of operational parameters (temperature of the process, steam/carbon ratio, and feed flow rate) has been weighed painstakingly, along with introducing the research gap and future perspectives in the territory of SRM catalysts.
Collapse
Affiliation(s)
- Mohsen Rostami
- Department of Engineering, Imam Ali University, Tehran, Iran
| | | | | | - Mahdi Ebrahimi Farshchi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Zhang L, Zhang K, Wang C, Liu Y, Wu X, Peng Z, Cao H, Li B, Jiang J. Advances and Prospects in Metal-Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102201. [PMID: 34396693 DOI: 10.1002/smll.202102201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen is a clean and sustainable energy carrier, which is considered a promising alternative for fossil fuels to solve the global energy crisis and respond to climate change. Social concerns on its safe storage promote continuous exploration of alternatives to traditional storage methods. In this case, chemical hydrogen storage materials initiate plentiful research with special attention to the design of heterogeneous catalysts that can enhance efficient and highly selective hydrogen production. Metal-organic frameworks (MOFs), a kind of unique crystalline porous materials featuring highly ordered porosities and tailorable structures, can provide various active sites (i.e., metal nodes, functional linkers, and defects) for heterogeneous catalysis. Furthermore, the easy construction of active sites in highly ordered MOFs, which can work as plate for the delicate active site engineering, make them ideal candidates for a variety of heterogeneous catalysts including chemocatalytic hydrogen production. This review concentrates on the application of MOFs as heterogeneous catalysts or catalyst supports in chemocatalytic hydrogen production. Recent progresses of MOFs as catalysts for chemocatalytic hydrogen production are comprehensively summarized. The research methods, mechanism analyses, and prospects of MOFs in this field are discussed. The challenges in future industrial applications of MOFs as catalysts for hydrogen production are proposed.
Collapse
Affiliation(s)
- Lina Zhang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ke Zhang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Chengming Wang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Zhikun Peng
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
4
|
Ranjekar AM, Yadav GD. Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05041] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Apoorva M. Ranjekar
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Ganapati D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| |
Collapse
|
5
|
Liu L, Zhou X, Guo L, Yan S, Li Y, Jiang S, Tai X. Bimetallic Au–Pd alloy nanoparticles supported on MIL-101(Cr) as highly efficient catalysts for selective hydrogenation of 1,3-butadiene. RSC Adv 2020; 10:33417-33427. [PMID: 35515058 PMCID: PMC9056711 DOI: 10.1039/d0ra06432g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022] Open
Abstract
Gold–palladium (Au–Pd) bimetallic nanoparticle (NP) catalysts supported on MIL-101(Cr) with Au : Pd mole ratios ranging from 1 : 3 to 3 : 1 were prepared through coimpregnation and H2 reduction. Au–Pd NPs were homogeneously distributed on the MIL-101(Cr) with mean particle sizes of 5.6 nm. EDS and XPS analyses showed that bimetallic Au–Pd alloys were formed in the Au(2)Pd(1)/MIL-101(Cr). The catalytic performance of the catalysts was explored in the selective 1,3-butadiene hydrogenation at 30–80 °C on a continuous fixed bed flow quartz reactor. The bimetallic Au–Pd alloy particles stabilized by MIL-101(Cr) presented improved catalytic performance. The as-synthesized bimetallic Au(2)Pd(1)/MIL-101(Cr) with 2 : 1 Au : Pd mole ratio showed the best balance between the activity and butene selectivity in the selective 1,3-butadiene hydrogenation. The Au–Pd bimetallic-supported catalysts can be reused in at least three runs. The work affords a reference on the utilization of a MOF and alloy nanoparticles to develop high-efficiency catalysts. Bimetallic Au–Pd alloy particles stabilized by MIL-101(Cr) showed high activity and butene selectivity for 1,3-butadiene hydrogenation reaction.![]()
Collapse
Affiliation(s)
- Lili Liu
- School of Chemistry & Chemical Engineering and Environmental Engineering
- Weifang University
- Weifang 261061
- P. R. China
| | - Xiaojing Zhou
- School of Chemistry & Chemical Engineering and Environmental Engineering
- Weifang University
- Weifang 261061
- P. R. China
| | - Luxia Guo
- School of Chemistry & Chemical Engineering and Environmental Engineering
- Weifang University
- Weifang 261061
- P. R. China
| | - Shijuan Yan
- School of Chemistry & Chemical Engineering and Environmental Engineering
- Weifang University
- Weifang 261061
- P. R. China
| | - Yingjie Li
- School of Chemistry & Chemical Engineering and Environmental Engineering
- Weifang University
- Weifang 261061
- P. R. China
| | - Shuai Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering
- Weifang University
- Weifang 261061
- P. R. China
| | - Xishi Tai
- School of Chemistry & Chemical Engineering and Environmental Engineering
- Weifang University
- Weifang 261061
- P. R. China
| |
Collapse
|