1
|
Baweja GS, Gupta S, Kumar B, Patel P, Asati V. Recent updates on structural insights of MAO-B inhibitors: a review on target-based approach. Mol Divers 2024; 28:1823-1845. [PMID: 36977955 PMCID: PMC10047469 DOI: 10.1007/s11030-023-10634-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by slow movement, tremors, and stiffness caused due to loss of dopaminergic neurons caused in the brain's substantia nigra. The concentration of dopamine is decreased in the brain. Parkinson's disease may be happened because of various genetic and environmental factors. Parkinson's disease is related to the irregular expression of the monoamine oxidase (MAO) enzyme, precisely type B, which causes the oxidative deamination of biogenic amines such as dopamine. MAO-B inhibitors, available currently in the market, carry various adverse effects such as dizziness, nausea, vomiting, lightheadedness, fainting, etc. So, there is an urgent need to develop new MAO-B inhibitors with minimum side effects. In this review, we have included recently studied compounds (2018 onwards). Agrawal et al. reported MAO-B inhibitors with IC50 0.0051 µM and showed good binding affinity. Enriquez et al. reported a compound with IC50 144 nM and bind with some critical amino acid residue Tyr60, Ile198, and Ile199. This article also describes the structure-activity relationship of the compounds and clinical trial studies of related derivatives. These compounds may be used as lead compounds to develop potent compounds as MAO-B inhibitors.
Collapse
Affiliation(s)
- Gurkaran Singh Baweja
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Jose J, Varughese JK, Parvez MK, Mathew TV. Probing the inhibition of MAO-B by chalcones: an integrated approach combining molecular docking, ADME analysis, MD simulation, and MM-PBSA calculations. J Mol Model 2024; 30:103. [PMID: 38478122 DOI: 10.1007/s00894-024-05889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
CONTEXT Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B. METHODS Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand-protein interactions' dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones' potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.
Collapse
Affiliation(s)
- Jisna Jose
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Jibin K Varughese
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India
| | - Mohammad Khalid Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Thomas V Mathew
- Department of Chemistry, St. Thomas College, Palai, Arunapuram P.O., Kottayam, Kerala, 686574, India.
| |
Collapse
|
3
|
Kaur P, Rangra NK. Recent Advancements and SAR Studies of Synthetic Coumarins as MAO-B Inhibitors: An Updated Review. Mini Rev Med Chem 2024; 24:1834-1846. [PMID: 38778598 DOI: 10.2174/0113895575290599240503080025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The oxidative deamination of a wide range of endogenous and exogenous amines is catalyzed by a family of enzymes known as monoamine oxidases (MAOs), which are reliant on flavin-adenine dinucleotides. Numerous neurological conditions, such as Parkinson's disease (PD) and Alzheimer's disease (AD), are significantly correlated with changes in the amounts of biogenic amines in the brain caused by MAO. Hydrogen peroxide, reactive oxygen species, and ammonia, among other toxic consequences of this oxidative breakdown, can harm brain cells' mitochondria and cause oxidative damage. OBJECTIVE The prime objective of this review article was to highlight and conclude the recent advancements in structure-activity relationships of synthetic derivatives of coumarins for MAO-B inhibition, published in the last five years' research articles. METHODS The literature (between 2019 and 2023) was searched from platforms like Science Direct, Google Scholar, PubMed, etc. After going through the literature, we have found a number of coumarin derivatives being synthesized by researchers for the inhibition of MAO-B for the management of diseases associated with the enzyme such as Alzheimer's Disease and Parkinson's Disease. The effect of these coumarin derivatives on the enzyme depends on the substitutions associated with the structure. The structure-activity relationships of the synthetic coumarin derivatives that are popular nowadays have been described and summarized in the current study. RESULTS The results revealed the updated review on SAR studies of synthetic coumarins as MAO-B inhibitors, specifically for Alzheimer's Disease and Parkinson's Disease. The patents reported on coumarin derivatives as MAO-B inhibitors were also highlighted. CONCLUSION Recently, coumarins, a large class of chemicals with both natural and synthetic sources, have drawn a lot of attention because of the vast range of biological actions they have that are linked to neurological problems. Numerous studies have demonstrated that chemically produced and naturally occurring coumarin analogs both exhibited strong MAO-B inhibitory action. Coumarins bind to MAO-B reversibly thereby preventing the breakdown of neurotransmitters like dopamine leading to the inhibition of the enzyme A number of MAO-B blockers have been proven to be efficient therapies for treating neurological diseases like Alzheimer's Disease and Parkinson's Disease. To combat these illnesses, there is still an urgent need to find effective treatment compounds.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| |
Collapse
|
4
|
Krishna A, Kumar S, Sudevan ST, Singh AK, Pappachen LK, Rangarajan TM, Abdelgawad MA, Mathew B. A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:697-714. [PMID: 37190818 DOI: 10.2174/1871527322666230515155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.
Collapse
Affiliation(s)
- Athulya Krishna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
5
|
Jayan J, Lee J, Kumar S, Manoharan A, Narayanan AP, Jauhari R, Abdelgawad MA, Ghoneim MM, Ebrahim HA, Mary Zachariah S, Kim H, Mathew B. Development of a New Class of Monoamine Oxidase-B Inhibitors by Fine-Tuning the Halogens on the Acylhydrazones. ACS OMEGA 2023; 8:47606-47615. [PMID: 38144071 PMCID: PMC10733988 DOI: 10.1021/acsomega.3c05719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
A total of 14 acyl hydrazine derivatives (ACH1-ACH14) were developed and examined for their ability to block monoamine oxidase (MAO). Thirteen analogues showed stronger inhibition potency against MAO-B than MAO-A. With a half-maximum inhibitory concentration of 0.14 μM, ACH10 demonstrated the strongest inhibitory activity against MAO-B, followed by ACH14, ACH13, ACH8, and ACH3 (IC50 = 0.15, 0.18, 0.20, and 0.22 μM, respectively). Structure-activity relationships suggested that the inhibition effect on MAO-B resulted from the combination of halogen substituents of the A- and/or B-rings. This series concluded that when -F was substituted to the B-ring, MAO-B inhibitory activities were high, except for ACH6. In the inhibition kinetics study, the compounds ACH10 and ACH14 were identified as competitive inhibitors, with Ki values of 0.097 ± 0.0021 and 0.10 ± 0.038 μM, respectively. In a reversibility experiment using the dialysis methods, ACH10 and ACH14 showed effective recoveries of MAO-B inhibition as much as lazabemide, a reversible reference. These experiments proposed that ACH10 and ACH14 were efficient, reversible competitive MAO-B inhibitors. In addition, the lead molecules showed good blood-brain barrier permeation with the PAMPA method. The molecular docking and molecular dynamics simulation study confirmed that the hit compound ACH10 can form a stable protein-ligand complex by forming a hydrogen bond with the NH atom in the hydrazide group of the compound.
Collapse
Affiliation(s)
- Jayalakshmi Jayan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Jiseong Lee
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Amritha Manoharan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | | | - Reenoo Jauhari
- School
of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
- Pharmacognosy
and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hasnaa Ali Ebrahim
- Department
of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Subin Mary Zachariah
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, India
| |
Collapse
|
6
|
Singh AK, Kim SM, Oh JM, Abdelgawad MA, Ghoneim MM, Rangarajan TM, Kumar S, Sudevan ST, Trisciuzzi D, Nicolotti O, Kim H, Mathew B. Exploration of a new class of monoamine oxidase B inhibitors by assembling benzyloxy pharmacophore on halogenated chalcones. Chem Biol Drug Des 2023; 102:271-284. [PMID: 37011915 DOI: 10.1111/cbdd.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Eight derivatives of benzyloxy-derived halogenated chalcones (BB1-BB8) were synthesized and tested for their ability to inhibit monoamine oxidases (MAOs). MAO-A was less efficiently inhibited by all compounds than MAO-B. Additionally, the majority of the compounds displayed significant MAO-B inhibitory activities at 1 μM with residual activities of less than 50%. With an IC50 value of 0.062 μM, compound BB4 was the most effective in inhibiting MAO-B, followed by compound BB2 (IC50 = 0.093 μM). The lead molecules showed good activity than the reference MAO-B inhibitors (Lazabemide IC50 = 0.11 μM and Pargyline Pargyline IC50 = 0.14). The high selectivity index (SI) values for MAO-B were observed in compounds BB2 and BB4 (430.108 and 645.161, respectively). Kinetics and reversibility experiments revealed that BB2 and BB4 were reversible competitive MAO-B inhibitors with Ki values of 0.030 ± 0.014 and 0.011 ± 0.005 μM, respectively. Swiss target prediction confirmed the high probability in the targets of MAO-B for both compounds. Hypothetical binding mode revealed that the BB2 or BB4 is similarly oriented to the binding cavity of MAO-B. Based on the modelling results, BB4 showed a stable confirmation during the dynamic simulation. From these results, it was concluded that BB2 and BB4 were potent selective reversible MAO-B inhibitors and they can be considered drug candidates for treating related neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Seong-Min Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
7
|
Pacureanu L, Bora A, Crisan L. New Insights on the Activity and Selectivity of MAO-B Inhibitors through In Silico Methods. Int J Mol Sci 2023; 24:ijms24119583. [PMID: 37298535 DOI: 10.3390/ijms24119583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
To facilitate the identification of novel MAO-B inhibitors, we elaborated a consolidated computational approach, including a pharmacophoric atom-based 3D quantitative structure-activity relationship (QSAR) model, activity cliffs, fingerprint, and molecular docking analysis on a dataset of 126 molecules. An AAHR.2 hypothesis with two hydrogen bond acceptors (A), one hydrophobic (H), and one aromatic ring (R) supplied a statistically significant 3D QSAR model reflected by the parameters: R2 = 0.900 (training set); Q2 = 0.774 and Pearson's R = 0.884 (test set), stability s = 0.736. Hydrophobic and electron-withdrawing fields portrayed the relationships between structural characteristics and inhibitory activity. The quinolin-2-one scaffold has a key role in selectivity towards MAO-B with an AUC of 0.962, as retrieved by ECFP4 analysis. Two activity cliffs showing meaningful potency variation in the MAO-B chemical space were observed. The docking study revealed interactions with crucial residues TYR:435, TYR:326, CYS:172, and GLN:206 responsible for MAO-B activity. Molecular docking is in consensus with and complementary to pharmacophoric 3D QSAR, ECFP4, and MM-GBSA analysis. The computational scenario provided here will assist chemists in quickly designing and predicting new potent and selective candidates as MAO-B inhibitors for MAO-B-driven diseases. This approach can also be used to identify MAO-B inhibitors from other libraries or screen top molecules for other targets involved in suitable diseases.
Collapse
Affiliation(s)
- Liliana Pacureanu
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| | - Alina Bora
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| | - Luminita Crisan
- "Coriolan Dragulescu" Institute of Chemistry, 24 Mihai Viteazu Ave., 300223 Timisoara, Romania
| |
Collapse
|
8
|
Mellado M, Sariego-Kluge R, Valdés-Navarro F, González C, Sánchez-González R, Pizarro N, Villena J, Jara-Gutierrez C, Cordova C, Bravo MA, Aguilar LF. Synthesis of fluorescent chalcones, photophysical properties, quantitative structure-activity relationship and their biological application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122332. [PMID: 36652804 DOI: 10.1016/j.saa.2023.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/01/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The development of fluorescent pigments is an area of interest in several research fields due to their high sensitivity. In the current study-eight known and three new N,N-dimethylamino-chalcones (12a-k) were synthesized with good yields using the Claisen-Schmidt reaction. For each molecular system, the photophysical properties, including the maximum absorption wavelength (λAbsorption), molar absorption coefficient (ε), maximum excitation wavelength (λExcitation), maximum emission wavelength (λEmission), Stokes Shift (Δλ), fluorescence quantum yield (Φfl), fluorescence lifetime (τfl), radiative and non-radiative rate constants (kR and kNR, respectively) were evaluated. Variations in each of these properties were analyzed depending on the substituents present on each compound. To relate the chemical structures of the synthesized compounds to their photophysical properties, Hansch analysis (2D-QSPR) was applied. As a result of Hansch analysis, we found different photophysical properties related to molecular orbitals and the energy of their derivatives (Highest Occupied Molecular Orbital-HOMO, Lowest Unoccupied Molecular Orbital-LUMO, Difference between LUMO-HOMO-ΔLH, Chemical potential-µ, Hardness-η, Softness-S, and electrophilic global index-ω) as well as to the atomic charges on atoms C5, Cα, Cβ, and CO. The application of this type of analysis has made it possible to understand and subsequently design new molecules with defined photophysical properties. Finally, the compounds were use as fluorescent pigment to get living cell imaging on breast cancer cells, obtaining the compound 12a as promissory alternative.
Collapse
Affiliation(s)
- Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile.
| | - Rafaela Sariego-Kluge
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Franco Valdés-Navarro
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - César González
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Rodrigo Sánchez-González
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nancy Pizarro
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Viña del Mar, Chile
| | - Joan Villena
- Laboratorio de Bioensayos, Facultad de Medicina, Centro de Investigaciones Biomédicas (CIB), Universidad de Valparaíso, Viña del Mar, Chile
| | - Carlos Jara-Gutierrez
- Laboratorio de Bioensayos, Escuela de Kinesiología, Facultad de Medicina, Centro de Investigaciones Biomédicas (CIB), Universidad de Valparaíso, Viña del Mar, Chile
| | - Claudio Cordova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Manuel A Bravo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
9
|
Sharma P, Singh M. An ongoing journey of chalcone analogues as single and multi-target ligands in the field of Alzheimer's disease: A review with structural aspects. Life Sci 2023; 320:121568. [PMID: 36925061 DOI: 10.1016/j.lfs.2023.121568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disorder with progressive dementia and cognitive impairment. AD poses severe health challenge in elderly people and become one of the leading causes of death worldwide. It possesses complex pathophysiology with several hypotheses (cholinergic hypothesis, amyloid hypothesis, tau hypothesis, oxidative stress, mitochondrial dysfunction etc.). Several attempts have been made for the management of multifactorial AD. Acetylcholinesterase is the only target has been widely explored in the management of AD to the date. The current review set forth the chalcone based natural, semi-synthetic and synthetic compounds in the search of potential anti-Alzheimer's agents. The main highlights of current review emphasizes on chalcone target different enzymes and pathways like Acetylcholinesterase, β-secretase (BACE1), tau proteins, MAO, free radicals, Advanced glycation end Products (AGEs) etc. and their structure activity relationships contributing in the inhibition of above mentioned various targets of AD.
Collapse
Affiliation(s)
- Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
10
|
Mettai M, Daoud I, Mesli F, Kenouche S, Melkemi N, Kherachi R, Belkadi A. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson's disease with novel scaffold. In Silico Pharmacol 2023; 11:3. [PMID: 36687301 PMCID: PMC9852416 DOI: 10.1007/s40203-023-00139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Monoamine oxidase B and Adenosine A2A receptors are used as key targets for Parkinson's disease. Recently, hMAO-B and hA2AR Dual-targets inhibitory potential of a novel series of Phenylxanthine derivatives has been established in experimental findings. Hence, the current study examines the interactions between 38 compounds of this series with hMAO-B and hA2AR targets using different molecular modeling techniques to investigate the binding mode and stability of the formed complexes. A molecular docking study revealed that the compounds L24 ((E)-3-(3-Chlorophenyl)-N-(4-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl) phenyl) acrylamide and L32 ((E)-3-(3-Chlorophenyl)-N-(3-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)phenyl)acrylamide) had a high affinity (S-score: -10.160 and -7.344 kcal/mol) with the pocket of hMAO-B and hA2AR targets respectively, and the stability of the studied complexes was confirmed during MD simulations. Also, the MEP maps of compounds 24 and 32 were used to identify the nucleophilic and electrophilic attack regions. Moreover, the bioisosteric replacement approach was successfully applied to design two new analogs of each compound with similar biological activities and low energy scores. Furthermore, ADME-T and Drug-likeness results revealed the promising pharmacokinetic properties and oral bioavailability of these compounds. Thus, compounds L24, L32, and their analogs can undergo further analysis and optimization in order to design new lead compounds with higher efficacy toward Parkinson's disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00139-3.
Collapse
Affiliation(s)
- Merzaka Mettai
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ismail Daoud
- Department of Matter Sciences, University Mohamed Khider, BP 145 RP, 07000 Biskra, Algeria
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Fouzia Mesli
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Samir Kenouche
- Group of Modeling of Chemical Systems using Quantum Calculations, Applied Chemistry Laboratory, University of Mohamed Khider, 07000 Biskra, Algeria
| | - Nadjib Melkemi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Rania Kherachi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ahlem Belkadi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| |
Collapse
|
11
|
Sánchez-González R, Leyton P, Aguilar LF, Reyna-Jeldes M, Coddou C, Díaz K, Mellado M. Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study. Microorganisms 2022; 10:microorganisms10081483. [PMID: 35893541 PMCID: PMC9330556 DOI: 10.3390/microorganisms10081483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, antimicrobial resistance is a serious concern associated with the reduced efficacy of traditional antibiotics and an increased health burden worldwide. In response to this challenge, the scientific community is developing a new generation of antibacterial molecules. Contributing to this effort, and inspired by the resveratrol structure, five new resveratrol-dimers (9a−9e) and one resveratrol-monomer (10a) were synthetized using 2,5-dibromo-1,4-diaminobenzene (8) as the core compound for Schiff base bridge conformation. These compounds were evaluated in vitro against pathogenic clinical isolates of Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus sp., and Listeria monocytogenes. Antibacterial activity measurements of resveratrol-Schiff base derivatives (9a−9e) and their precursors (4−8) showed high selectivity against Listeria monocytogenes, being 2.5 and 13.7 times more potent than chloramphenicol, while resveratrol showed an EC50 > 320 µg/mL on the same model. Moreover, a prospective mechanism of action for these compounds against L. monocytogenes strains was proposed using molecular docking analysis, finding a plausible inhibition of internalin C (InlC), a surface protein relevant in bacteria−host interaction. These results would allow for the future development of new molecules for listeriosis treatment based on compound 8.
Collapse
Affiliation(s)
- Rodrigo Sánchez-González
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Patricio Leyton
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Luis F. Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (R.S.-G.); (P.L.); (L.F.A.)
| | - Mauricio Reyna-Jeldes
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (M.R.-J.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (M.R.-J.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado y Clínico, Universidad Católica del Norte, Antofagasta 1270709, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
- Correspondence: (K.D.); (M.M.)
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Correspondence: (K.D.); (M.M.)
| |
Collapse
|
12
|
Cheng NN, Zhang LH, Ge R, Feng XE, Li QS. Triphenylpyrazoline ketone chlorophenols as potential candidate compounds against Parkinson’s disease: design, synthesis, and biological evaluation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Cytotoxic Effects on Breast Cancer Cell Lines of Chalcones Derived from a Natural Precursor and Their Molecular Docking Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144387. [PMID: 35889260 PMCID: PMC9318862 DOI: 10.3390/molecules27144387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to determine the in vitro cytotoxicity and understand possible cytotoxic mechanisms via an in silico study of eleven chalcones synthesized from two acetophenones. Five were synthesized from a prenylacetophenone isolated from a plant that grows in the Andean region of the Atacama Desert. The cytotoxic activity of all the synthesized chalcones was tested against breast cancer cell lines using an MTT cell proliferation assay. The results suggest that the prenyl group in the A-ring of the methoxy and hydroxyl substituents of the B-ring appear to be crucial for the cytotoxicity of these compounds. The chalcones 12 and 13 showed significant inhibitory effects against growth in MCF-7 cells (IC50 4.19 ± 1.04 µM and IC50 3.30 ± 0.92 µM), ZR-75-1 cells (IC50 9.40 ± 1.74 µM and IC50 8.75 ± 2.01µM), and MDA-MB-231 cells (IC50 6.12 ± 0.84 µM and IC50 18.10 ± 1.65 µM). Moreover, these chalcones showed differential activity between MCF-10F (IC50 95.76 ± 1.52 µM and IC50 95.11 ± 1.97 µM, respectively) and the tumor lines. The in vitro results agree with molecular coupling results, whose affinity energies and binding mode agree with the most active compounds. Thus, compounds 12 and 13 can be considered for further studies and are candidates for developing new antitumor agents. In conclusion, these observations give rise to a new hypothesis for designing chalcones with potential cytotoxicity with high potential for the pharmaceutical industry.
Collapse
|
14
|
Mellado M, Roldán N, Miranda R, Aguilar LF, Bravo MA, Quiroz W. Sensitive fluorescent chemosensor for Hg(II) in aqueous solution using 4'-dimethylaminochalcone. J Fluoresc 2022; 32:1449-1456. [PMID: 35441925 DOI: 10.1007/s10895-022-02941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2022] [Indexed: 12/14/2022]
Abstract
Mercury (Hg) is an element with high toxicity, especially to the nervous system, and fluorescent pigments are used to visualize dynamic processes in living cells. A little explored fluorescent core is chalcone. Herein, we synthesized chalcone (2E)-3-(4-(dimethylamino)phenyl)-1-phenylprop-2-en-1-one (8) and assessed its photophysical properties. Moreover, the application of this chemosensor in aqueous media shows a selective fluorescence quenching effect with Hg(II). The figures of merit for the chemosensor were calculated to be LOD = 136 nM and LOQ = 454 nM, as well as a stoichiometry of 1:1. Furthermore, the association constant (Ka) and fluorescence quenching constant (KSV) were calculated using the Benesi-Hildebrand and Stern-Volmer equations to be Ka= 9.08 × 104 and KSV= 1.60 × 105, respectively. Finally, by using a computational approach, we explain the interaction between chalcone (8) and Hg(II) and propose a potential quenching mechanism based on the blocking of photoinduced electron transfer.
Collapse
Affiliation(s)
- Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile.
| | - Nicole Roldán
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Rodrigo Miranda
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Manuel A Bravo
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Waldo Quiroz
- Instituto de Química, Facultad de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile.
| |
Collapse
|
15
|
Mellado M, Reyna-Jeldes M, Weinstein-Oppenheimer C, Covarrubias AA, Aguilar LF, Coddou C, Mella J, Cuellar MA. QSAR-driven synthesis of antiproliferative chalcones against SH-SY5Y cancer cells: Design, biological evaluation, and redesign. Arch Pharm (Weinheim) 2022; 355:e2200042. [PMID: 35435270 DOI: 10.1002/ardp.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
Neuroblastoma is one of the most frequent types of cancer found in infants, and traditional chemotherapy has limited efficacy against this pathology. Thus, the development of new compounds with higher activity and selectivity than traditional drugs is a current challenge in medicinal chemistry research. In this study, we report the synthesis of 21 chalcones with antiproliferative activity and selectivity against the neuroblastoma cell line SH-SY5Y. Then, we developed three-dimensional quantitative structure-activity relationship models (comparative molecular field analysis and comparative molecular similarity index analysis) with high-quality statistical values (q2 > 0.7; r2 > 0.8; r2 pred > 0.7), using IC50 and selectivity index (SI) data as dependent variables. With the information derived from these theoretical models, we designed and synthesized 16 new molecules to prove their consistency, finding good antiproliferative activity against SH-SY5Y cells on these derivatives, with three of them showing higher SI than the referential drugs 5-fluorouracil and cisplatin, displaying also a proapoptotic effect comparable to these drugs, as proven by measuring their effects on executor caspases 3/7 activity induction, Bcl-2/Bax messenger RNA levels alteration, and DNA fragmentation promotion.
Collapse
Affiliation(s)
- Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
| | - Mauricio Reyna-Jeldes
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandra A Covarrubias
- Laboratorio de Neurotoxicología Ambiental, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudio Coddou
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jaime Mella
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile.,Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Mauricio A Cuellar
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Li Y, Zhou X, Li SM, Zhang Y, Yuan CM, He S, Yang Z, Yang S, Zhou K. Increasing Structural Diversity of Prenylated Chalcones by Two Fungal Prenyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1610-1617. [PMID: 35089022 DOI: 10.1021/acs.jafc.1c07786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prenylated chalcones are found mainly in plants and exhibit diverse biological and pharmacological activities. Some of these compounds are components of food and dietary supplements with significant health benefits. In plants, they are derived from chalcones by prenylation with membrane-bound prenyltransferases. In this study, we demonstrate prenylations of 10 chalcones by two fungal prenyltransferases (AtaPT/AnaPT) in the presence of dimethylallyl diphosphate. Eleven mono- (1a-10a and 9b) and four diprenylated products (8b, 9c, 10b, and 10c) were obtained. Among them, 12 have new structures (1a, 2a, 4a-6a, 8a, 8b, 9b, 9c, 10a, 10b, and 10c). Most of the obtained prenylated chalcones are products of AnaPT and carry prenyl moieties at ring B. Our study provides an excellent example for increasing structural diversity of plant metabolites with microbial enzymes.
Collapse
Affiliation(s)
- Yunyun Li
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Xiang Zhou
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Yuping Zhang
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gaohai Road, Guiyang 550014, China
| | - Shuzhong He
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Zaichang Yang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Song Yang
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| |
Collapse
|
17
|
Coumarin-Resveratrol-Inspired Hybrids as Monoamine Oxidase B Inhibitors: 3-Phenylcoumarin versus trans-6-Styrylcoumarin. Molecules 2022; 27:molecules27030928. [PMID: 35164192 PMCID: PMC8838197 DOI: 10.3390/molecules27030928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Monoamine oxidases (MAOs) are attractive targets in drug design. The inhibition of one of the isoforms (A or B) is responsible for modulating the levels of different neurotransmitters in the central nervous system, as well as the production of reactive oxygen species. Molecules that act selectively on one of the MAO isoforms have been studied deeply, and coumarin has been described as a promising scaffold. In the current manuscript we describe a comparative study between 3-phenylcoumarin (endo coumarin-resveratrol-inspired hybrid) and trans-6-styrylcoumarin (exo coumarin-resveratrol-inspired hybrid). Crystallographic structures of both compounds were obtained and analyzed. 3D-QSAR models, in particular CoMFA and CoMSIA, docking simulations and molecular dynamics simulations have been performed to support and better understand the interaction of these molecules with both MAO isoforms. Both molecules proved to inhibit MAO-B, with trans-6-styrylcoumarin being 107 times more active than 3-phenylcoumarin, and 267 times more active than trans-resveratrol.
Collapse
|
18
|
Mellado M, González C, Mella J, Aguilar LF, Viña D, Uriarte E, Cuellar M, Matos MJ. Combined 3D-QSAR and docking analysis for the design and synthesis of chalcones as potent and selective monoamine oxidase B inhibitors. Bioorg Chem 2021; 108:104689. [PMID: 33571810 DOI: 10.1016/j.bioorg.2021.104689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Monoamine oxidases (MAOs) are important targets in medicinal chemistry, as their inhibition may change the levels of different neurotransmitters in the brain, and also the production of oxidative stress species. New chemical entities able to interact selectively with one of the MAO isoforms are being extensively studied, and chalcones proved to be promising molecules. In the current work, we focused our attention on the understanding of theoretical models that may predict the MAO-B activity and selectivity of new chalcones. 3D-QSAR models, in particular CoMFA and CoMSIA, and docking simulations analysis have been carried out, and their successful implementation was corroborated by studying twenty-three synthetized chalcones (151-173) based on the generated information. All the synthetized molecules proved to inhibit MAO-B, being ten out of them MAO-B potent and selective inhibitors, with IC50 against this isoform in the nanomolar range, being (E)-3-(4-hydroxyphenyl)-1-(2,2-dimethylchroman-6-yl)prop-2-en-1-one (152) the best MAO-B inhibitor (IC50 of 170 nM). Docking simulations on both MAO-A and MAO-B binding pockets, using compound 152, were carried out. Calculated affinity energy for the MAO-A was +2.3 Kcal/mol, and for the MAO-B was -10.3 Kcal/mol, justifying the MAO-B high selectivity of these compounds. Both theoretical and experimental structure-activity relationship studies were performed, and substitution patterns were established to increase MAO-B selectivity and inhibitory efficacy. Therefore, we proved that both 3D-QSAR models and molecular docking approaches enhance the probability of finding new potent and selective MAO-B inhibitors, avoiding time-consuming and costly synthesis and biological evaluations.
Collapse
Affiliation(s)
- Marco Mellado
- Facultad de Ciencias, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile.
| | - César González
- Departamento de Química, Universidad Técnico Federico Santa María, Av. España, 1680 Valparaíso, Chile
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña, 1111 Valparaíso, Chile
| | - Luis F Aguilar
- Facultad de Ciencias, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad #330, Curauma, Valparaíso, Chile
| | - Dolores Viña
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Mauricio Cuellar
- Centro de Investigación Farmacopea Chilena, Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña, 1093 Valparaíso, Chile
| | - Maria J Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| |
Collapse
|
19
|
Mellado M, Mella J, González C, Viña D, Uriarte E, Matos MJ. 3-Arylcoumarins as highly potent and selective monoamine oxidase B inhibitors: Which chemical features matter? Bioorg Chem 2020; 101:103964. [DOI: 10.1016/j.bioorg.2020.103964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
|