1
|
Singha K, Kumari G, Jagadevan S, Sarkar AN, Pal S. In Situ Synthesis of Exfoliated Ni(OH) 2 Nanosheets and AgNPs-Embedded Functionalized Polyindole-Based Trinary Hybrid Microspheres: A Z-Scheme Photocatalyst for the Sunlight-Driven Degradation of Organic Pollutants with Enhanced Antibacterial Efficacy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16208-16225. [PMID: 39046098 DOI: 10.1021/acs.langmuir.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Advancing a facile one-pot synthetic approach for the fabrication of a hybrid heterojunction photocatalyst remains a significant challenge in research pursuits. Herein, a microsphere-like trinary hybrid nanocomposite has been synthesized (NH/PIn/MAA/Ag). It comprises exfoliated single- and a few-layered Ni(OH)2 (NH nanosheets), mercaptoacetate-functionalized polyindole (PIn/MAA), and Ag nanoparticles (AgNPs) through an in situ approach. The formation mechanism is based on the exfoliation of stacked Ni(OH)2 multilayers [i.e., Ni(OH)2 microflowers] and stabilization of NH nanosheets through host-guest formation of PIn/MAA, followed by the adsorption-reduction of Ag+ ions in a one-pot reaction at low temperature. Surface morphological analyses of hybrid nanocomposite microspheres have exhibited that highly dense Ni(OH)2 microflowers have been transformed into low-density layered forms (NH nanosheets) within the polymeric platform (PIn/MAA) with deposited AgNPs. An interfacial heterojunction has been developed between the components in the depletion region, leading to an improvement in photocatalytic efficiency through a synergistic effect over the components for charge separation and transfer through the heterojunction interface via solid-state mediator Ag-based Z-scheme charge transfer dynamics. The superior photocatalytic degradation of tetracycline (98.2%) by trinary hybrid microspheres can be attributed to the deteriorated recombination rate of electron-hole pairs with reduced charge transfer resistance of the heterojunction in the photocatalyst, as obvious from photoluminescence, electrochemical impedance spectroscopy, chronoamperometry, and time-resolved photoluminescence (TRPL) analyses. Moreover, the antibacterial properties of microspheres against Bacillus pumilus (Gram-positive) and Escherichia coli (Gram-negative) bacteria have validated their potential as promising materials for the overall purification of aquatic systems.
Collapse
Affiliation(s)
- Koushik Singha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Gitanjalee Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Abanindra Nath Sarkar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
2
|
Mir RA, Hoseini AHA, Hansen EJ, Tao L, Zhang Y, Liu J. Molybdenum Sulfide Nanoflowers as Electrodes for Efficient and Scalable Lithium-Ion Capacitors. Chemistry 2024; 30:e202400907. [PMID: 38649319 DOI: 10.1002/chem.202400907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Hybrid supercapacitors (HSCs) bridge the unique advantages of batteries and capacitors and are considered promising energy storage devices for hybrid vehicles and other electronic gadgets. Lithium-ion capacitors (LICs) have attained particular interest due to their higher energy and power density than traditional supercapacitor devices. The limited voltage window and the deterioration of anode materials upsurged the demand for efficient and stable electrode materials. Two-dimensional (2D) molybdenum sulfide (MoS2) is a promising candidate for developing efficient and durable LICs due to its wide lithiation potential and unique layer structure, enhancing charge storage efficiency. Modifying the extrinsic features, such as the dimensions and shape at the nanoscale, serves as a potential path to overcome the sluggish kinetics observed in the LICs. Herein, the MoS2 nanoflowers have been synthesized through a hydrothermal route. The developed LIC exhibited a specific capacitance of 202.4 F g-1 at 0.25 A g-1 and capacitance retention of >90 % over 5,000 cycles. Using an ether electrolyte improved the voltage window (2.0 V) and enhanced the stability performance. The ex-situ material characterization after the stability test reveals that the storage mechanism in MoS2-LICs is not diffusion-controlled. Instead, the fast surface redox reactions, especially intercalation/deintercalation of ions, are more prominent for charge storage.
Collapse
Affiliation(s)
- Rameez Ahmad Mir
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Amir Hosein Ahmadian Hoseini
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Evan J Hansen
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Li Tao
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Yue Zhang
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Jian Liu
- School of Engineering, Faculty of Applied Science, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
3
|
Parvathi K, Ramesan MT. Tailoring the structural, electrical and thermal properties of zinc oxide reinforced chlorinated natural rubber/poly (indole) blend nanocomposites for flexible electrochemical devices. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
The phenomenon of increasing capacitance induced by 1T/2H-MoS2 surface modification with Pt particles – Influence on composition and energy storage mechanism. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Rashidi M, Ghasemi F. Thermally oxidized MoS2-based hybrids as superior electrodes for supercapacitor and photoelectrochemical applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Xavier MM, Mohanapriya S, Mathew R, Adarsh NN, Nair PR, Mathew S. Fabrication of ternary composites with polymeric carbon nitride/MoS 2/reduced graphene oxide ternary hybrid aerogel as high-performance electrode materials for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj02960f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Presenting a remarkable ternary hybrid aerogel, as an excellent electrode material with a specific capacitance of 467 Fg−1 and capacitance retention upto 80.4% even after 2000 cycles, demonstrating good stability and improved cyclic performance.
Collapse
Affiliation(s)
- Marilyn Mary Xavier
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - S. Mohanapriya
- CSIR-Central Electro Chemical Research Institute, College Road, Karaikudi, Tamil Nadu, 630003, India
| | - Reshma Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Nayarassery N. Adarsh
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York, 13699, USA
| | - P. Radhakrishnan Nair
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Suresh Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, 686560, Kerala, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| |
Collapse
|
7
|
Mohanta MK, Kishore A, De Sarkar A. Two-dimensional ultrathin van der Waals heterostructures of indium selenide and boron monophosphide for superfast nanoelectronics, excitonic solar cells, and digital data storage devices. NANOTECHNOLOGY 2020; 31:495208. [PMID: 32975227 DOI: 10.1088/1361-6528/abaf20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconducting indium selenide (InSe) monolayers have drawn a great deal of attention among all the chalcogenide two-dimensional materials on account of their high electron mobility; however, they suffer from low hole mobility. This inherent limitation of an InSe monolayer can be overcome by stacking it on top of a boron phosphide (BP) monolayer, where the complementary properties of BP can bring additional benefits. The electronic, optical, and external perturbation-dependent electronic properties of InSe/BP hetero-bilayers have been systematically investigated within density functional theory in anticipation of its cutting-edge applications. The InSe/BP heterostructure has been found to be an indirect semiconductor with an intrinsic type-II band alignment where the conduction band minimum (CBM) and valence band maximum (VBM) are contributed by the InSe and BP monolayers, respectively. Thus, the charge carrier mobility in the heterostructure, which is mainly derived from the BP monolayer, reaches as high as 12 × 103 cm2 V-1 s-1, which is very much desired in superfast nanoelectronics. The suitable bandgap accompanied by a very low conduction band offset between the donor and acceptor along with robust charge carrier mobility, and the mechanical and dynamical stability of the heterostructure attests its high potential for applications in solar energy harvesting and nanoelectronics. The solar to electrical power conversion efficiency (20.6%) predicted in this work surpasses the efficiencies reported for InSe based heterostructures, thereby demonstrating its superiority in solar energy harvesting. Moreover, the heterostructure transits from the semiconducting state (the OFF state) to the metallic state (the ON state) by the application of a small electric field (∼0.15 V Å-1) which is brought about by the actual movement of the bands rather than via the nearly empty free electron gas (NFEG) feature. This thereby testifies to its potential for applications in digital data storage. Moreover, the heterostructure shows strong absorbance over a wide spectrum ranging from UV to the visible light of solar radiation, which will be of great utility in UV-visible light photodetectors.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Amal Kishore
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab, 160062, India
| |
Collapse
|
8
|
Mohanta MK, De Sarkar A. Interfacial hybridization of Janus MoSSe and BX (X = P, As) monolayers for ultrathin excitonic solar cells, nanopiezotronics and low-power memory devices. NANOSCALE 2020; 12:22645-22657. [PMID: 33155008 DOI: 10.1039/d0nr07000a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we explored the interfacial two-dimensional (2D) physics and significant advancements in the application prospects of MoSSe monolayer when it is combined with a boron pnictide (BP, BAs) monolayer in a van der Waals heterostructure (vdWH) setup. The constructed vdWHs were found to be mechanically and dynamically stable, and they form type-II p-n heterojunctions. Thus, the photogenerated electron-hole pairs are spatially separated. In the BX/MoSSe vdWHs, the BX monolayer serves as excellent donor material for MoSSe, having an ideal donor band gap of ∼1.3 eV. The small value of the conduction band offset (CBO) between the individual monolayers in the vdWHs makes it an excellent candidate for solar energy harvesting in excitonic solar cells, where the power conversion efficiencies were calculated to be 22.97% (BP/MoSSe) and 20.86% (BAs/MoSSe). Also, more than four-fold enhancement in the out-of-plane piezoelectric coefficient (d33) was observed in the MoSSe-based vdWH relative to that in the MoS2-based vdWH owing to the intrinsic built-in vertical electric field in MoSSe. This is consistent with the out-of-plane piezoelectricity brought about by the alteration in symmetry at the metal-semiconductor Schottky junction, which has been observed experimentally [M.-M. Yang, Z.-D. Luo, Z. Mi, J. Zhao, S. P. E and M. Alexe, Nature, 2020, 584, 377-381]. The results obtained in this work provide useful insights into the design of nanomaterials for future applications in nano-optoelectronics, more efficient excitonic solar cells, and nanoelectromechanical systems (NEMS). Furthermore, this work demonstrates outstanding potential for the application of these vdWHs in superfast electronics, including low-power digital data storage and memory devices, where the tunnel current between the source and drain is effectively tunable using a normal electric field of small magnitude serving as the gate voltage.
Collapse
Affiliation(s)
- Manish Kumar Mohanta
- Institute of Nano Science and Technology, Phase 10, Sector 64, Mohali, Punjab - 160062, India.
| | | |
Collapse
|
9
|
Zhang X, Gao Y. 2D/2D h‐BN/N‐doped MoS
2
Heterostructure Catalyst with Enhanced Peroxidase‐like Performance for Visual Colorimetric Determination of H
2
O
2. Chem Asian J 2020; 15:1315-1323. [DOI: 10.1002/asia.201901753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Zhang
- College of Chemical Engineering Inner Mongolia University of Technology 49 Aimin Road Hohhot 010051 China
| | - Yanfang Gao
- College of Chemical Engineering Inner Mongolia University of Technology 49 Aimin Road Hohhot 010051 China
| |
Collapse
|