1
|
Martynova EA, Zuccarello M, Kronenberg D, Beliš M, Czapik A, Zhang Z, Van Hecke K, Kwit M, Baudoin O, Cavallo L, Nolan SP. Simple synthetic access to [Au(IBiox)Cl] complexes. Dalton Trans 2023; 52:7558-7563. [PMID: 37191083 DOI: 10.1039/d3dt01357j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Green and sustainable access to chiral and achiral gold-IBiox complexes is reported. The gold complexes were synthesized using a simple, air-tolerant, weak base protocol carried out in a green solvent. Their catalytic activity was examined in the hydroamination of alkynes. The steric protection afforded the gold center by these ligands was quantified using the %Vbur model and compared with the most commonly encountered NHCs.
Collapse
Affiliation(s)
- Ekaterina A Martynova
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Marco Zuccarello
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | - Domenic Kronenberg
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | - Marek Beliš
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Agnieszka Czapik
- King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Ziyun Zhang
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Marcin Kwit
- King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | - Luigi Cavallo
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Dey S, Ghosh P. Accessing Heteroannular Benzoxazole and Benzimidazole Scaffolds via Carbodiimides Using Azide-Isocyanide Cross-Coupling as Catalyzed by Mesoionic Singlet Palladium Carbene Complexes Derived from a Phenothiazine Moiety. ACS OMEGA 2023; 8:11039-11064. [PMID: 37008148 PMCID: PMC10061513 DOI: 10.1021/acsomega.2c07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The coupling of aryl and aliphatic azides with isocyanides yielding carbodiimides (8-17) were efficiently catalyzed by well-defined structurally characterized trans-(MIC)PdI2(L) [MIC = 1-CH2Ph-3-Me-4-(CH2N(C6H4)2S)-1,2,3-triazol-5-ylidene, L = NC5H5 (4), MesNC (5)], trans-(MIC)2PdI2 (6), and cis-(MIC)Pd(PPh3)I2 (7) type palladium complexes, which incidentally mark the first instances of the use of mesoionic singlet palladium carbene complexes for the said application. As observed from the product yields, the catalytic activity varied in the order 4 > 5 ∼ 6 > 7 for these complexes. A detailed mechanistic studies indicated that the catalysis proceeded via a palladium(0) (4a-7 a) species. Using a representative palladium precatalyst (4), the azide-isocyanide coupling was successfully extended to synthesizing two different bioactive heteroannular benzoxazole (18-22) and benzimidazole (23-27) derivatives, thereby broadening the scope of the catalytic application.
Collapse
Affiliation(s)
- Shreyata Dey
- Department
of Chemistry Indian Institute of Technology
Bombay Powai, Mumbai 400 076, India
| | - Prasenjit Ghosh
- Department
of Chemistry Indian Institute of Technology
Bombay Powai, Mumbai 400 076, India
| |
Collapse
|
3
|
Liang C, Wu F, Miao T, Zhang P, Zhang W, Wu F, Shi Q. Construction of a MOF-Supported Palladium Catalyst via Metal Metathesis. Chem Asian J 2023; 18:e202201096. [PMID: 36413147 DOI: 10.1002/asia.202201096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
A new MOF-supported heterogeneous palladium catalyst Pd/NBB-1 has been synthesized successfully through the effective metal metathesis between Pd(CF3 COO)2 and NBB-1. NBB-1 is a two-dimensional zinc metal-organic framework constructed from 2-aminoterephthalate (NH2 -H2 BDC) and 2,2'-bipyridine-5-carboxylate (HBPC) by solvothermal method. The replacement efficiency of Pd(II) to Zn(II) is up to 72% after only 24 hours, which is beneficial to the catalytic application. Pd/NBB-1 with a low loading of 2 mol% works efficiently in the 1,4-addition reaction of arylboronic acids with α,β-unsaturated ketones in air, and its catalytic activity keeps unchanged after 3 reaction cycles. This work provides a new strategy to effectively prepare supported noble metal/MOF catalysts, which would further increase the practical applications of metal-organic frameworks.
Collapse
Affiliation(s)
- Chenglong Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Fei Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Tingting Miao
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Peng Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Weibing Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province, 325035, P. R. China
| |
Collapse
|
4
|
de la Fuente-Olvera AA, Ruiz-Mendoza FJ, Vasquez-Perez JM, Melendez-Rodriguez M, Alvarez-Hernandez A, Salazar-Pereda V, Mendoza-Espinosa D. <p class="Title1"><span lang="DE">Rhodium(I) complexes bearing hydroxyl‐functionalized 1,2,3‐triazolylidenes and their catalytic application <o:p></o:p></span></p>. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | | | | | - Daniel Mendoza-Espinosa
- Universidad Autonoma del Estado de Hidalgo Chemsitry Carretera Pachuca-TulancingoKm 4.5Mineral de la Reforma 42090 Mineral de la Reforma MEXICO
| |
Collapse
|
5
|
Palladium(II), silver(I), and gold(I) complexes of a new class of chiral bicyclic [1,2,3]-triazolooxazine derived N-heterocyclic carbenes (NHCs): Synthesis, structure and application studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Iron-Catalyzed Conjugate Addition of Aryl Iodides onto Activated Alkenes under Air in Water. Catalysts 2020. [DOI: 10.3390/catal10111320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combination of commercially available FeCl3·6H2O with a water-soluble cationic 2,2′-bipyridyl catalytic system was found to enable the direct conjugate addition of aryl iodides onto activated alkenes, such as an α,β-unsaturated ester and a ketone, in a weakly acidic aqueous solution. This operationally simple protocol was carried out at 80 °C under air atmosphere in a potassium acetate-buffered aqueous solution for 12 h in the presence of Zn dust as a reductant to provide the desired 1,4-adducts in good yields.
Collapse
|