1
|
Wang JM, Zhao Y, Li WP, Kong XJ, Yao CS, Zhang K. Synthesis of tetracyclic dibenzo[ b, f][1,4]oxazepine-fused β-lactams via visible-light-induced Staudinger annulation. Org Biomol Chem 2023; 21:7106-7114. [PMID: 37610712 DOI: 10.1039/d3ob01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An efficient visible-light-induced Staudinger [2 + 2] annulation reaction between α-diazo ketones and dibenzo[b,f][1,4]oxazepine/thiazepine-imines under catalyst-free conditions has been developed. This protocol provides a facile method to synthesize tetracyclic dibenzo[b,f][1,4]oxazepine/thiazepine-fused β-lactams bearing a quaternary carbon center with a broad substrate scope and high efficiency (37 examples, up to >99% yield).
Collapse
Affiliation(s)
- Jiao-Mei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, P. R China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shanxi 716000, P. R. China
| | - Wen-Ping Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| | - Xiang-Jun Kong
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, P. R China
| | - Chang-Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P R China.
| |
Collapse
|
2
|
Xie X, Bao M, Chen KW, Xu X, Hu W. Asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine. Org Chem Front 2022. [DOI: 10.1039/d2qo00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dirhodium and chiral phosphoric acid co-catalyzed asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine has been developed via Mannich-type interception of transient oxonium ylide. This reaction...
Collapse
|
3
|
Reddy MK, Bhajammanavar V, Baidya M. Annulation Cascade of Sulfamate-Derived Cyclic Imines with Glycine Aldimino Esters: Synthesis of 1,3-Benzoxazepine Scaffolds. Org Lett 2021; 23:3868-3872. [PMID: 33956452 DOI: 10.1021/acs.orglett.1c01001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient (3 + 2) cycloaddition triggered annulation is reported to access 1,3-benzoxazepine frameworks. With amine base, sulfamate-derived cyclic imines readily react with glycine aldimino esters to furnish benzo-fused seven-membered heterocyclic products in good yields. The cascade reaction involves the formation of one C-C, one C-N, and one C-O bond along with the cleavage of two C-N bonds and one S-O bond. The synthesis of o-tyrosine analogues has also been accomplished from annulation products.
Collapse
Affiliation(s)
- Mallu Kesava Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
4
|
Yadav J, Pawar AP, Nagare YK, Iype E, Rangan K, Ohshita J, Kumar D, Kumar I. Direct Amine-Catalyzed Enantioselective Synthesis of Pentacyclic Dibenzo[ b, f][1,4]oxazepine/Thiazepine-Fused Isoquinuclidines along with DFT Calculations. J Org Chem 2020; 85:14094-14108. [PMID: 33030896 DOI: 10.1021/acs.joc.0c02141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A direct protocol for the asymmetric synthesis of dibenzoxazepine/thiazepine-fused [2.2.2] isoquinuclidines is developed. The reaction proceeds through a proline-catalyzed direct Mannich reaction followed by an intramolecular aza-Michael cascade sequence between 2-cyclohexene-1-one and various tricyclic imines, like dibenzoxazepines/thiazepines, as an overall [4 + 2] aza-Diels-Alder reaction. A series of pentacyclic isoquinuclidines have been prepared, with complete endo-selectivity, in good to high yields and excellent enantioselectivity (>99:1). Density functional theory (DFT) calculations further support the observed high stereochemical outcome of the reaction.
Collapse
Affiliation(s)
- Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Yadav Kacharu Nagare
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Eldhose Iype
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai 345055, UAE
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Joji Ohshita
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|