1
|
Cui H, Ma J, Liu Y, Wang C, Song Q. Dimethyl Sulfoxide: An Ideal Electrochemical Probe for Hydroxyl Radical Detection. ACS Sens 2024; 9:1508-1514. [PMID: 38387077 DOI: 10.1021/acssensors.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In situ and real-time determination of hydroxyl radicals (•OH) in physiological and pathological processes is a great challenge due to their ultrashort lifetime. Herein, an electrochemical method was developed by using dimethyl sulfoxide (DMSO) as a trapping probe for rapid determination of •OH in aqueous solution. When DMSO reacted with •OH, an intermediate product methane sulfinic acid (MSIA) was formed, which can be electrochemically oxidized to methanesulfonic acid (MSA) on the glassy carbon electrode (GCE), resulting in a distinct voltammetric signal that is directly proportional to the concentration of •OH. Other commonly encountered reactive oxygen species (ROS), including hypochlorite anions (ClO-), superoxide anions (O2•-), sulfate radicals (SO4•-), and singlet oxygen (1O2), have showed no interference for •OH determination. Thus, an electrochemical method was developed for the determination of •OH, which exhibits a wide linear range (0.4-5120 μM) and a low limit detection of 0.13 μM (S/N = 3) and was successfully applied for the quantification of •OH in aqueous extracts of cigarette tar (ACT). Alternatively, the same reaction mechanism is also applicable for the determination of DMSO, in which a linear range of 40-320 μM and a detection limit 13.3 μM (S/N = 3) was achieved. The method was used for the evaluation of DMSO content in cell cryopreservation medium. This work demonstrated that DMSO can serve as an electrochemical probe and has valuable application potential in radical study, biological research, and environmental monitoring.
Collapse
Affiliation(s)
- Haining Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| | - Jinxin Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| | - Youyi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P. R. China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
2
|
Zhang F, Zhang R, He S, Guan J, Feng Z, Wu Z. Formation of free radicals in Chi-aroma Baijiu during aging process with fat pork. Free Radic Res 2023; 57:271-281. [PMID: 37401820 DOI: 10.1080/10715762.2023.2232095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Soaking aged fat pork is a special aging process in the production of Chi-aroma Baijiu considered to involve the formation of free radicals. This study aimed to investigate the free radicals' formation pathway in Chi-aroma Baijiu during aged fat pork soaking by using electron paramagnetic resonance (EPR) and spin trapping with 5,5-dimethyl-1-pyrrolin-n-oxide (DMPO). The alkyl radical adducts (DMPO-R) and hydroxyl radical adducts (DMPO-OH) were detected in Baijiu after soaking the fat pork for aging. During the preparation process of aged fat pork, alkoxy radicals adduct (DMPO-RO) were mainly detected since lipid oxidation. Oleic acid and linoleic acid, the two main unsaturated fatty acids in fat pork, produced alkoxy radicals in the oxidation process. The total amounts of spins in linoleic acid and oleic acid after 4-month oxidation treatment increased by 248.07 ± 26.65% and 34.17 ± 0.72% than 0-month. It indicated that the free radicals in aged Chi-aroma Baijiu were mainly derived from the two main unsaturated fatty acids in aged fat pork and linoleic acid had a stronger ability to produce free radicals than oleic acid. Alkoxy radicals (RO·) from fat pork reacted with ethanol in Baijiu to form alkyl radicals (R·). The peroxide bond of hydroperoxides from the oxidation of unsaturated fatty acid was cleaved to form hydroxyl radicals (·OH) that were transferred to Baijiu. The results provide theoretical guidance for the subsequent work of free radicals scavenging.
Collapse
Affiliation(s)
- Fengjiao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Renjie Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen, P.R. China
| | - Songgui He
- Guangdong Jiujiang Distillery Co., Ltd, Foshan, P.R. China
| | - Jingyi Guan
- Guangdong Jiujiang Distillery Co., Ltd, Foshan, P.R. China
| | - Zhaoxing Feng
- Guangdong Jiujiang Distillery Co., Ltd, Foshan, P.R. China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Ghaedamini H, Duanghathaipornsuk S, Onusko P, Binsheheween AM, Kim DS. Reduced Glutathione-Modified Electrode for the Detection of Hydroxyl Free Radicals. BIOSENSORS 2023; 13:254. [PMID: 36832020 PMCID: PMC9953857 DOI: 10.3390/bios13020254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hydroxyl radicals (•OH) are known as essential chemicals for cells to maintain their normal functions and defensive responses. However, a high concentration of •OH may cause oxidative stress-related diseases, such as cancer, inflammation, and cardiovascular disorders. Therefore, •OH can be used as a biomarker to detect the onset of these disorders at an early stage. Reduced glutathione (GSH), a well-known tripeptide for its antioxidant capacity against reactive oxygen species (ROS), was immobilized on a screen-printed carbon electrode (SPCE) to develop a real-time detection sensor with a high selectivity towards •OH. The signals produced by the interaction of the GSH-modified sensor and •OH were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The CV curve of the GSH-modified sensor in the Fenton reagent exhibited a pair of well-defined peaks, demonstrating the redox reaction of the electrochemical sensor and •OH. The sensor showed a linear relationship between the redox response and the concentration of •OH with a limit of detection (LOD) of 49 µM. Furthermore, using EIS studies, the proposed sensor demonstrated the capability of differentiating •OH from hydrogen peroxide (H2O2), a similar oxidizing chemical. After being immersed in the Fenton solution for 1 hr, redox peaks in the CV curve of the GSH-modified electrode disappeared, revealing that the immobilized GSH on the electrode was oxidized and turned to glutathione disulfide (GSSG). However, it was demonstrated that the oxidized GSH surface could be reversed back to the reduced state by reacting with a solution of glutathione reductase (GR) and nicotinamide adenine dinucleotide phosphate (NADPH), and possibly reused for •OH detection.
Collapse
Affiliation(s)
| | | | | | | | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Fluorogenic toolbox for facile detecting of hydroxyl radicals: From designing principles to diagnostics applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Kumari R, Dkhar DS, Mahapatra S, Divya, Kumar R, Chandra P. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Geraskevich AV, Solomonenko AN, Dorozhko EV, Korotkova EI, Barek J. Electrochemical Sensors for the Detection of Reactive Oxygen Species in Biological Systems: A Critical Review. Crit Rev Anal Chem 2022; 54:742-774. [PMID: 35867547 DOI: 10.1080/10408347.2022.2098669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Reactive oxygen species (ROS) involving superoxide anion, hydrogen peroxide and hydroxyl radical play important role in human health. ROS are known to be the markers of oxidative stress associated with different pathologies including neurodegenerative and cardiovascular diseases, as well as cancer. Accordingly, ROS level detection in biological systems is an essential problem for biomedical and analytical research. Electrochemical methods seem to have promising prospects in ROS determination due to their high sensitivity, rapidity, and simple equipment. This review demonstrates application of modern electrochemical sensors for ROS detection in biological objects (e.g., cell lines and body fluids) over a decade between 2011 and 2021. Particular attention is paid to sensors materials and various types of modifiers for ROS selective detection. Moreover, the sensors comparative characteristics, their main advantages, disadvantages and their possibilities and limitations are discussed.
Collapse
Affiliation(s)
- Alina V Geraskevich
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Anna N Solomonenko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena V Dorozhko
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena I Korotkova
- Division for Chemical Engineering, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Jiří Barek
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague 2, Czechia, Czech Republic
| |
Collapse
|
7
|
Duanghathaipornsuk S, Kim DS, Phares TL, Li CH, Jinschek JR, Alba-Rubio AC. Supersensitive CeO x-based nanocomposite sensor for the electrochemical detection of hydroxyl free radicals. NANOSCALE 2021; 13:5136-5144. [PMID: 33651058 DOI: 10.1039/d1nr00015b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is well known that an excess of hydroxyl radicals (˙OH) in the human body is responsible for oxidative stress-related diseases. An understanding of the relationship between the concentration of ˙OH and those diseases could contribute to better diagnosis and prevention. Here we present a supersensitive nanosensor integrated with an electrochemical method to measure the concentration of ˙OH in vitro. The electrochemical sensor consists of a composite comprised of ultrasmall cerium oxide nanoclusters (<2 nm) grafted to a highly conductive carbon deposited on a screen-printed carbon electrode (SPCE). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to analyze the interaction between cerium oxide nanoclusters and ˙OH. The CV results demonstrated that this electrochemical sensor had the capacity of detecting ˙OH with a high degree of accuracy and selectivity, achieving a consistent performance. Additionally, EIS results confirmed that our electrochemical sensor was able to differentiate ˙OH from hydrogen peroxide (H2O2), which is another common reactive oxygen species (ROS) found in the human body. The limit of detection (LOD) observed with this electrochemical sensor was of 0.6 μM. Furthermore, this nanosized cerium oxide-based electrochemical sensor successfully detected in vitro the presence of ˙OH in preosteoblast cells from newborn mouse bone tissue. The supersensitive electrochemical sensor is expected to be beneficially used in multiple applications, including medical diagnosis, fuel-cell technology, and food and cosmetic industries.
Collapse
Affiliation(s)
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA.
| | - Tamara L Phares
- Department of Bioengineering, The University of Toledo, Toledo, OH 43606, USA
| | - Cheng-Han Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joerg R Jinschek
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
8
|
Jin W, Zhang H, Hu M, Hu M, Wei Y, Liang J, Kan R, Wang Q. A Robust Optical Sensor for Remote Multi-Species Detection Combining Frequency-Division Multiplexing and Normalized Wavelength Modulation Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2021; 21:1073. [PMID: 33557382 PMCID: PMC7915438 DOI: 10.3390/s21041073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022]
Abstract
By combining frequency-division multiplexing and normalized wavelength modulation spectroscopy, a robust remote multi-species sensor was developed and demonstrated for practical hydrocarbon monitoring. Independently modulated laser beams are combined to simultaneously interrogate different gas samples using an open-ended centimeter-size multipass cell. Gas species of interest are demodulated with the second harmonics to enhance sensitivity, and high immunity to laser power variation is achieved by normalizing to the corresponding first harmonics. Performance of the optical sensor was experimentally evaluated using methane (CH4) and acetylene (C2H2) samples, which were separated by a 3-km fiber cable from the laser source. Sub-ppm sensitivity with 1-s time resolution was achieved for both gas species. Moreover, even with large laser intensity fluctuations ranging from 0 to 6 dB, the noise can be kept within 1.38 times as much as that of a stable intensity case. The reported spectroscopic technique would provide a promising optical sensor for remote monitoring of multi hazardous gases with high robustness.
Collapse
Affiliation(s)
- Wenling Jin
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (W.J.); (H.Z.); (M.H.); (M.H.); (J.L.); (R.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (W.J.); (H.Z.); (M.H.); (M.H.); (J.L.); (R.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mai Hu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (W.J.); (H.Z.); (M.H.); (M.H.); (J.L.); (R.K.)
| | - Mengpeng Hu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (W.J.); (H.Z.); (M.H.); (M.H.); (J.L.); (R.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubin Wei
- Institute of Laser, Shandong Academy of Sciences, Jinan 250014, China;
| | - Jingqiu Liang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (W.J.); (H.Z.); (M.H.); (M.H.); (J.L.); (R.K.)
| | - Ruifeng Kan
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (W.J.); (H.Z.); (M.H.); (M.H.); (J.L.); (R.K.)
| | - Qiang Wang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (W.J.); (H.Z.); (M.H.); (M.H.); (J.L.); (R.K.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Duanghathaipornsuk S, Farrell EJ, Alba-Rubio AC, Zelenay P, Kim DS. Detection Technologies for Reactive Oxygen Species: Fluorescence and Electrochemical Methods and Their Applications. BIOSENSORS 2021; 11:30. [PMID: 33498809 PMCID: PMC7911324 DOI: 10.3390/bios11020030] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) have been found in plants, mammals, and natural environmental processes. The presence of ROS in mammals has been linked to the development of severe diseases, such as diabetes, cancer, tumors, and several neurodegenerative conditions. The most common ROS involved in human health are superoxide (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). Organic and inorganic molecules have been integrated with various methods to detect and monitor ROS for understanding the effect of their presence and concentration on diseases caused by oxidative stress. Among several techniques, fluorescence and electrochemical methods have been recently developed and employed for the detection of ROS. This literature review intends to critically discuss the development of these techniques to date, as well as their application for in vitro and in vivo ROS detection regarding free-radical-related diseases. Moreover, important insights into and further steps for using fluorescence and electrochemical methods in the detection of ROS are presented.
Collapse
Affiliation(s)
| | - Eveline J Farrell
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Ana C Alba-Rubio
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, The University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
10
|
Wang Q, Zhang H, Shen X, Wang F, Mao C. A Flexible DNA Biosensor for Breast Cancer Marker BRCA1 Detection. ChemistrySelect 2020. [DOI: 10.1002/slct.202003933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- School of Geography Nanjing Normal University Nanjing 210023 China
| | - Huanyu Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xiaohui Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fenghe Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment Nanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
11
|
Detection of Hydroxyl Radicals Using Cerium Oxide/Graphene Oxide Composite on Prussian Blue. NANOMATERIALS 2020; 10:nano10061136. [PMID: 32526855 PMCID: PMC7353455 DOI: 10.3390/nano10061136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
A composite sensor consisting of two separate inorganic layers of Prussian blue (PB) and a composite of cerium oxide nanoparticles (CeNPs) and graphene oxide (GO), is tested with •OH radicals. The signals from the interaction between the composite layers and •OH radicals are characterized using cyclic voltammetry (CV). The degradation of PB in the presence of H2O2 and •OH radicals is observed and its impact on the sensor efficiency is investigated. The results show that the composite sensor differentiates between the solutions with and without •OH radicals by the increase of electrochemical redox current in the presence of •OH radicals. The redox response shows a linear relation with the concentration of •OH radicals where the limit of detection, LOD, is found at 60 µM (100 µM without the PB layer). When additional composite layers are applied on the composite sensor to prevent the degradation of PB layer, the PB layer is still observed to be degraded. Furthermore, the sensor conductivity is found to decrease with the additional layers of composite. Although the CeNP/GO/PB composite sensor demonstrates high sensitivity with •OH radicals at low concentrations, it can only be used once due to the degradation of PB.
Collapse
|
12
|
Qu X, Bian Y, Chen Y, Wei X. A sensitive BODIPY-based fluorescent probe for detecting endogenous hydroxyl radicals in living cells. RSC Adv 2020; 10:28705-28710. [PMID: 35520039 PMCID: PMC9055842 DOI: 10.1039/d0ra05378c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023] Open
Abstract
A novel “turn-on” NIR fluorescent probe was designed and used for monitoring endogenous hydroxyl radical in living cells, which also showed higher selectivity toward hydroxyl radical over other reactive oxygen/nitrogen species.
Collapse
Affiliation(s)
- Xingyu Qu
- College of Chemistry and Chemical Engineering
- Jinzhong University
- Yuci 030619
- China
| | - Yongjun Bian
- College of Chemistry and Chemical Engineering
- Jinzhong University
- Yuci 030619
- China
| | - Yongqiang Chen
- College of Chemistry and Chemical Engineering
- Jinzhong University
- Yuci 030619
- China
| | - Xiaoqing Wei
- College of Chemistry and Chemical Engineering
- Jinzhong University
- Yuci 030619
- China
| |
Collapse
|