1
|
Farajollahi A, Poursattar Marjani A. Preparation of MWCNT/CoMn 2O 4 nanocomposite for effectual degradation of picric acid via peroxymonosulfate activation. Sci Rep 2024; 14:11475. [PMID: 38769448 PMCID: PMC11636912 DOI: 10.1038/s41598-024-62351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
In recent years, using nanomaterials based on multi-wall carbon nanotubes (MWCNT) through the activation of peroxymonosulfate (PMS) has attracted more attention to the degradation of organic pollutants. This research presented a new route for the synthesis of MWCNT/CoMn2O4 nanocomposite for the degradation of picric acid using advanced oxidation processes (AOPs). Firstly, CoMn2O4 nanoparticles were prepared and then loaded on MWCNT using ultrasonic waves. The results of various analyzes confirmed the successful loading of nanoparticles on carbon nanotubes. As the degradation process proceeds through oxidation processes, the high electronic conductivity of MWCNT and the active sites of Mn and Co in the nanocomposite play an essential role in activating PMS to generate reactive oxygen species (ROS). An investigation of the reaction mechanism in different conditions showed that the highest speed of picric acid decomposition in the presence of nanocomposite (98%) was in 47 min. However, the scavenger test showed that HO· and SO4·- radicals are more important in the degradation process. Meanwhile, the results showed that removing picric acid using MWCNT/CoMn2O4 was more effective than CoMn2O4 alone and confirmed the interaction effect of MWCNT nanotubes with AB2O4 nanocatalyst.
Collapse
Affiliation(s)
- Ayda Farajollahi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | | |
Collapse
|
2
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
3
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
4
|
An electrochemical impedance study of core/shell nanocomposites containing MFe2O4@P(Pyrrole-co-o-toluidine). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
o-Toluidine in electrochemistry – an overview. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe substituted aromatic amine o-toluidine (2-methylaniline, 1-amino-2-methylbenzene) is frequently encountered in electrochemical research as a soluble corrosion inhibitor dissolved in aqueous media used e.g., in cooling systems, as a homomonomer for formation of intrinsically conducting poly-o-toluidine and as a comonomer in formation of respective copolymers and their composites. The obtained polymers are suggested as corrosion protection coatings, as active materials in devices for electrochemical energy storage, but more frequently, they are examined as active components in electrochemical sensors.The significant and pronounced carcinogenicity of o-toluidine has hardly been addressed; presumably, most researchers are not even aware of this property. After a brief summary of the health risks and effects, the following overview presents typical examples of said studies and applications. If possible, substitutes with lower health risks are proposed, at least further studies enabling such replacement are suggested.
Collapse
|
6
|
AL-Refai HH, Ganash AA, Hussein MA. Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Almehmadi SJ, Alamry KA, Elfaky MA, Asiri AM, Hussien MA, Al-Sheheri SZ, Hussein MA. The role of the arylidene linkage on the antimicrobial enhancement of new tert-butylcyclohexanone-based polyketones. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Kushwaha CS, Singh P, Abbas NS, Shukla SK. Structurally Functionalized Cupric Oxide Encapsulated Chitosan Grafted Polyaniline Composite for Potentiometric Sensing of Methyl Parathion. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chandra Shekhar Kushwaha
- Department of Chemistry University of Delhi Delhi 110007 India
- Bhaskaracharya College of Applied Sciences University of Delhi Delhi 110075 India
| | - Pratibha Singh
- Department of Chemistry University of Delhi Delhi 110007 India
- Bhaskaracharya College of Applied Sciences University of Delhi Delhi 110075 India
| | - N. S. Abbas
- Bhaskaracharya College of Applied Sciences University of Delhi Delhi 110075 India
| | - S. K. Shukla
- Bhaskaracharya College of Applied Sciences University of Delhi Delhi 110075 India
| |
Collapse
|
9
|
Katowah DF, Mohammed GI, Adeosun WA, Asiri AM, Hussein MA. Impact of CuO nanoparticles on the performance of ternary conductive C-PANI/(OXSWCNTs-GO-CS)/CuO network as a selective chlorophenol sensor. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1904986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waheed A. Adeosun
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Srinivasan SY, Gajbhiye V, Bodas D. Development of nano-immunosensor with magnetic separation and electrical detection of Escherichia coli using antibody conjugated Fe 3O 4@Ppy. NANOTECHNOLOGY 2021; 32:085603. [PMID: 33263309 DOI: 10.1088/1361-6528/abc8b1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of bacterial pathogens is the need of the hour due to the increase in antibiotic resistance and the infusion of multi-drug-resistant parasites. The conventional strategies such as ELISA, PCR, and MNP based tests for the detection are efficient but they are cost, time, lab, and manpower intensive. Thus, warranting a simple and effective technique for rapid detection of bacterial pathogens. Magnetic nanoparticles (NPs) have proved to be better alternatives for separation of bacterial pathogens from a variety of sample sources. However, the use of magnetic NPs has not been successful in the detection of these parasites. The current work involves the coating of magnetic NPs (Fe3O4) with a conducting polymer (polypyrrole; Ppy) to facilitate simultaneous separation and detection. Electrical (conductivity) measurement was the mode of choice due to the sensitivity, accuracy, and ease it offers. To enhance the conductivity, carboxylic groups were expressed on the Fe3O4@Ppy complex and to ensure specificity, E. coli specific antibodies were conjugated. The resulting complex at various process parameters was characterized using FTIR, VSM, and SEM. SEM images were recorded to ensure bacterial separation at optimal process parameters. The impedance analysis and conductivity measurements were carried out for the sample volume of 15 μl. The bacterial suspension from 101-106 CFU ml-1 was successfully detected with a limit of detection of 10 CFU ml-1 within 10 min using a simplistic detection method.
Collapse
Affiliation(s)
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune-411 004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, Pune-411 004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| |
Collapse
|
11
|
Alamry KA, Almehmadi SJ, Elfaky M, Al-Shareef HF, J. A. S, Hussein MA. Enhanced antimicrobial activity of new arylidene-based polyketone nanocomposite materials. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1784213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar J. Almehmadi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M.A. Elfaky
- Faculty of Pharmacy, Natural Products and Alternative Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H. F. Al-Shareef
- Departement of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Samah J. A.
- Department of Biochemistry, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Lab., Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Kushwaha CS, Shukla SK. Potentiometric extractive sensing of lead ions over a nickel oxide intercalated chitosan-grafted-polyaniline composite. Dalton Trans 2020; 49:13862-13871. [PMID: 33006591 DOI: 10.1039/d0dt02687e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present research paper reports the extractive potentiometric sensing of lead ions over a chemically functionalized ternary nanocomposite of nickel oxide intercalated chitosan grafted polyaniline (NiO-in-CHIT-g-PANI) prepared by the in situ chemical polymerization and composite formation technique under optimized conditions. The structural, morphological, and physical properties of the composite material were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and other suitable ASTM methods. The obtained analytical result suggests the formation of a porous hybrid composite matrix with better electrical conductivity ∼ 5.25 × 10-3 S cm-1, free interactive carbonyl sites, and evolved aligned crystallinity. Furthermore, a film of the synthesized composite was cast on ITO coated glass by the spin coating technique for potentiometric sensing and the recovery of adsorbed Pb2+ ions from natural and artificial water solutions. Under optimum conditions of ∼pH = 7.0 and a temperature of 25 °C, the electrode exhibited potential responses for Pb2+ ions in concentrations ranging from 1.0 × 10-6 M to 1 × 10-3 M along with a sensitivity of 0.2379 mV μM-1 cm-2, response time of 40 s, recovery time of 10 s, and stability for 64 days. The adsorbed Pb2+ ions were recovered at a rate of 84% after applying an optimized reverse voltage on the above-used electrodes. The adsorption and desorption mechanism has been explained based on the induced potential due to the electrochemical surface interaction between Pb2+ and the NiO-in-CHIT-g-PANI based electrode. The analytical application of the fabricated electrode in the real sample was also explored for the sensing and recovery of the respective metal ions in wastewater samples along with the possibility of optimization of the required metal concentrations.
Collapse
Affiliation(s)
- Chandra Shekhar Kushwaha
- Department of Polymer Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi-110075, India.
| | | |
Collapse
|
13
|
Bashir N, Akhtar M, Nawaz HZR, Warsi MF, Shakir I, Agboola PO, Zulfiqar S. A High Performance Electrochemical Sensor for Pb
2+
Ions Based on Carbon Nanotubes Functionalized CoMn
2
O
4
Nanocomposite. ChemistrySelect 2020. [DOI: 10.1002/slct.202001393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nagina Bashir
- Department of ChemistryBaghdad-ul-Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Mehwish Akhtar
- Department of ChemistryThe Govt. Sadiq College Women University Bahawalpur 63100 Pakistan
| | | | - Muhammad Farooq Warsi
- Department of ChemistryBaghdad-ul-Jadeed CampusThe Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Imran Shakir
- Sustainable Energy Technologies (SET) CenterCollege of EngineeringKing Saud University PO-BOX 800 Riyadh 11421 Saudi Arabia
| | - Philips O Agboola
- College of Engineering Al-Muzahmia BranchKing Saud University PO-BOX 800 Riyadh 11421 Saudi Arabia
| | - Sonia Zulfiqar
- Department of ChemistrySchool of Sciences & EngineeringThe American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
14
|
Katowah DF, Alqarni S, Mohammed GI, Al Sheheri SZ, Alam MM, Ismail SH, Asiri AM, Hussein MA, Rahman MM. Selective Hg
2+
sensor performance based various carbon‐nanofillers into
CuO‐PMMA
nanocomposites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dina F. Katowah
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Sara Alqarni
- Department of Chemistry, College of ScienceUniversity of Jeddah Jeddah Saudi Arabia
| | - Gharam I. Mohammed
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Soad Z. Al Sheheri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering and Polymer ScienceShahjalal University of Science and Technology Sylhet Bangladesh
| | | | - Abdullah M. Asiri
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Polymer chemistry Lab., Chemistry Department, Faculty of ScienceAssiut University Assiut Egypt
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
15
|
Albukhari SM, Hussein MA, Abdel Rahman MA, Marwani HM. Highly selective heteroaromatic sulfur containing polyamides for Hg +2 environmental remediation. Des Monomers Polym 2020; 23:25-39. [PMID: 32127791 PMCID: PMC7034069 DOI: 10.1080/15685551.2020.1727172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/01/2020] [Indexed: 11/04/2022] Open
Abstract
Environmental remediation concerns about pollution and contamination removal from environmental media, such as soil, air, or surface water. Enormous efforts have been applied in metal removal from surface water. In this study, four novel heteroaromatic sulfur-containing polyamides 6a-d carry both types of aliphatic and aromatic species in their polymer backbones as selective adsorbents for Hg+2 metal ion from aqueous solution have been synthesized in considerable amounts. The polycondensation method at low temperature is used as a simple and low coast polymerization technique. This occurred by the interaction of the thiophene-based monomer 5 with different diacid chlorides of both types. Beforehand the polymerization, the structures of monomer 5 were confirmed by spectral and elemental analyses. Also, the structures of the new polymers were investigated by both spectral and elemental analysis; besides their solubility, GPC data, XRD diffraction patterns, thermal analysis, and FE-SEM micrographs. The synthesized polymers were freely soluble in polar protic solvents due to the presence of heteroaromatic sulfur functional groups. Furthermore, the analytical competition of the new polymers has been tested using inductively coupled plasma-optical emission spectrometry (ICP-OES) for its selective extraction across different metal ions. Polymer 6c was the most selective toward Hg+2 and considered as a highly selective adsorbent for Hg+2 environmental remediation among all derivatives and its adsorption detection and efficiency were also investigated. Polymer 6c showed the most effective adsorption quantity on its surface at pH = 1. Moreover, the calculated adsorption isotherm showed a typical isotherm to the Langmuir adsorption type. This showed that the adsorption capacity of polymer 6c for Hg+2 was 47.95 mg g-1. These novel polymers are serving as simple and inexpensive heavy metal ions adsorbent materials from drinking water and wastewater.
Collapse
Affiliation(s)
- Soha M. Albukhari
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Polymer Chemistry Lab. 122, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mona A. Abdel Rahman
- Polymer Chemistry Lab. 122, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Hadi M. Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|