1
|
Magnetic Fe3O4@MIL-100(Fe) core-shells decorated with gold nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradation of azo dye. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
2
|
New Green Approaches in Nanoparticles Synthesis: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196472. [PMID: 36235008 PMCID: PMC9573382 DOI: 10.3390/molecules27196472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Nanotechnology is constantly expanding, with nanomaterials being more and more used in common commercial products that define our modern life. Among all types of nanomaterials, nanoparticles (NPs) occupy an important place, considering the great amount that is produced nowadays and the diversity of their applications. Conventional techniques applied to synthesize NPs have some issues that impede them from being appreciated as safe for the environment and health. The alternative to these might be the use of living organisms or biological extracts that can be involved in the green approach synthesis of NPs, a process that is free of harmful chemicals, cost-effective and a low energy consumer. Several factors, including biological reducing agent concentration, initial precursor salt concentration, agitation, reaction time, pH, temperature and light, can influence the characteristics of biologically synthesized NPs. The interdependence between these reaction parameters was not explored, being the main impediment in the implementation of the biological method on an industrial scale. Our aim is to present a brief review that focuses on the current knowledge regarding how the aforementioned factors can control the size and shape of green-synthesized NPs. We also provide an overview of the biomolecules that were found to be suitable for NP synthesis. This work is meant to be a support for researchers who intend to develop new green approaches for the synthesis of NPs.
Collapse
|
3
|
Biogenic plant mediated synthesis of monometallic zinc and bimetallic Copper/Zinc nanoparticles and their dye adsorption and antioxidant studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Kumar R, Davis E, Mazumdar P, Choudhury D, Shunmugam R. Engineering Spherically Super-Structured Polyamides for the Sustainable Water Remediation. ACS MATERIALS AU 2022; 2:117-123. [PMID: 36855766 PMCID: PMC9888625 DOI: 10.1021/acsmaterialsau.1c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Unlike metal-ornamented hybrid material and linear polymers, we invoked the growth of a biodegradable superstructured cross-linked polyamide-ester material. The material is thermally stable. The thiol-alkene photoclicked material acted as an efficient water remediator. The material efficiently monitored amphiphilic dyes like rhodamine B (RHB), methylene blue (MB), and chronic mercuric ions in water. The adsorption kinetics revealed the material could adsorb >95% dyes within 24 h. The RHB-functionalized polymer could sense mercuric ions too. The Density functional theory (DFT) calculation shows a chelated mercury complex with thioether in the polymer, Poly-Am-RhAll, to form a comparatively more stable complex.
Collapse
Affiliation(s)
- Rajan Kumar
- Polymer
Research Centre (PRC), Centre for Advanced Functional Materials (CAFM),
Department of Chemical Sciences, Indian
Institute of Science Education and Research Kolkata (IISER K), Mohanpur 741246, West Bengal, India
- Department
of Chemistry, Royal School of Applied and Pure Sciences (RSAPS), The Assam Royal Global University, Guwahati 781035, Assam India
| | - Elizabathe Davis
- Polymer
Research Centre (PRC), Centre for Advanced Functional Materials (CAFM),
Department of Chemical Sciences, Indian
Institute of Science Education and Research Kolkata (IISER K), Mohanpur 741246, West Bengal, India
| | - Pradyumna Mazumdar
- Department
of Chemistry, B. Borooah College, Guwahati 781007, Assam India
| | - Diganta Choudhury
- Department
of Chemistry, B. Borooah College, Guwahati 781007, Assam India
| | - Raja Shunmugam
- Polymer
Research Centre (PRC), Centre for Advanced Functional Materials (CAFM),
Department of Chemical Sciences, Indian
Institute of Science Education and Research Kolkata (IISER K), Mohanpur 741246, West Bengal, India
| |
Collapse
|
5
|
Karegar M, Khodaei MM. The modified
polythiophene‐Cu NPs
composites for Pb(
II
) ions removal from aqueous solution. J Appl Polym Sci 2022. [DOI: 10.1002/app.51489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mohsen Karegar
- Department of Organic Chemistry Razi University Kermanshah Iran
| | - Mohammad Mehdi Khodaei
- Department of Organic Chemistry Razi University Kermanshah Iran
- Nanoscience & Nanotechnology Research Center (NNRC) Razi University Kermanshah Iran
| |
Collapse
|
6
|
Din MI, Rizwan R, Hussain Z, Khalid R. Biogenic synthesis of mono dispersed Co/CoO nanoparticles using Syzygium cumini leaves for catalytic application. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1808993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Rimsha Rizwan
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab, New Campus Lahore, Pakistan
| |
Collapse
|
7
|
Anna KK, Bogireddy NKR, Ramírez-Bon R. Synthesis of cetyl trimethyl ammonium bromide (CTAB) capped copper oxide nanocubes for the remediation of organic pollutants using photocatalysis and catalysis. NANOTECHNOLOGY 2021; 32:105707. [PMID: 33227723 DOI: 10.1088/1361-6528/abccee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The aim of this report is to synthesize copper oxide nanocubes (CuO NCs) at room temperature, using sodium borohydride as a reducing agent, and Cetyl Trimethyl Ammonium Bromide (CTAB) as a stabilizing agent. The crystallinity and morphology of the synthesized CuO NCs are investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The optical properties were analyzed by means of UV-visible absorbance and Raman spectroscopy. The existence of specific functional groups and structural stability were established via FTIR spectroscopy and thermogravimetric analysis (TGA). Furthermore, the catalytic efficiency of the as-prepared CuO NCs was tested using catalytic and photocatalytic studies of para-nitrophenol (p-NP) reduction and methylene blue (MB) degradation, respectively. The catalytic results demonstrated the nanocubes' excellent catalytic and photocatalytic responses with respect to the abatement of p-NP and MB within 50 s and 240 min, with kinetic rate constants of 3.9 × 10-2 s-1 and 6.47 × 10-3 min-1, respectively.
Collapse
Affiliation(s)
- Kiran Kumar Anna
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001, Querétaro, Qro., Mexico
| | - Naveen Kumar Reddy Bogireddy
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - Rafael Ramírez-Bon
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001, Querétaro, Qro., Mexico
| |
Collapse
|
8
|
Nazim M, Khan AAP, Asiri AM, Kim JH. Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature. ACS OMEGA 2021; 6:2601-2612. [PMID: 33553878 PMCID: PMC7859952 DOI: 10.1021/acsomega.0c04747] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 06/01/2023]
Abstract
In this work, we report the facile, environmentally friendly, room-temperature (RT) synthesis of porous CuO nanosheets and their application as a photocatalyst to degrade an organic pollutant/food dye using NaBH4 as the reducing agent in an aqueous medium. Ultrahigh-resolution field effect scanning electron microscopy images of CuO displayed a broken nanosheet-like (a length of ∼160 nm, a width of ∼65 nm) morphology, and the lattice strain was estimated to be ∼1.24 × 10-3 using the Williamson-Hall analysis of X-ray diffraction plots. Owing to the strong quantum size confinement effect, CuO nanosheets resulted in an optical energy band gap of ∼1.92 eV, measured using Tauc plots of the ultraviolet-visible (UV-vis) spectrum, resulting in excellent photocatalytic efficiency. The RT synthesized CuO catalyst showed a high Brunauer-Emmet-Teller surface area of 30.88 ± 0.2313 m2/g (a correlation coefficient of 0.99972) with an average Barrett-Joyner-Halenda pore size of ∼20.385 nm. The obtained porous CuO nanosheets exhibited a high crystallinity of 73.5% with a crystallite size of ∼12 nm and was applied as an efficient photocatalyst for degradation of the organic pollutant/food dye, Allura Red AC (AR) dye, as monitored by UV-vis spectrophotometric analysis and evidenced by a color change from red to colorless. From UV-vis spectra, CuO nanosheets exhibited an efficient and ultrafast photocatalytic degradation efficiency of ∼96.99% for the AR dye in an aqueous medium within 6 min at RT. According to the Langmuir-Hinshelwood model, photodegradation reaction kinetics followed a pseudo-first-order reaction with a rate constant of k = 0.524 min-1 and a half-life (t 1/2) of 2.5 min for AR dye degradation in the aqueous medium. The CuO nanosheets showed an outstanding recycling ability for AR degradation and would be highly favorable and an efficient catalyst due to the synergistic effect of high adsorption capability and photodegradation of the food dye.
Collapse
Affiliation(s)
- Mohammed Nazim
- Division
of Energy Technology, Daegu Gyeongbuk Institute
of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 42988, Republic
of Korea
| | - Aftab Aslam Parwaz Khan
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jae Hyun Kim
- Division
of Energy Technology, Daegu Gyeongbuk Institute
of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu 42988, Republic
of Korea
| |
Collapse
|
9
|
|
10
|
Han XW, Pan H, liu M. In situ construction of reduced graphene oxide supported Ag nanoneedles heterogenous nanostructures with superior catalytic activity for 4-nitrophenol. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Qasem M, El Kurdi R, Patra D. Preparation of Curcubit[6]uril functionalized CuO Nanoparticles: A New Nanosensing Scheme Based on Fluorescence recovery after FRET for the Label Free Determination of Dopamine. ChemistrySelect 2020. [DOI: 10.1002/slct.202000595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mayada Qasem
- Department of ChemistryAmerican University of Beirut Beirut Lebanon
| | - Riham El Kurdi
- Department of ChemistryAmerican University of Beirut Beirut Lebanon
| | - Digambara Patra
- Department of ChemistryAmerican University of Beirut Beirut Lebanon
| |
Collapse
|