1
|
Garg S, Choudhary MK, Kataria J. Unlocking the potential of biogenic Ag@g-C 3N 4 in sustainable water purification: A Kinetic and Photocatalytic study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125126. [PMID: 39414072 DOI: 10.1016/j.envpol.2024.125126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/06/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This research introduces a pioneering biogenic deposition-precipitation method for synthesis of Ag@g-C3N4 nanocomposites (NCs) employing fennel seed extract (FSE). This technique involves the reduction and capping of silver nanoparticles (AgNPs) onto g-C3N4, employing polyphenolic content of FSE, consequently establishing a strong Schottky junction. The, NCs were characterized through various spectroscopic and microscopic techniques, confirming successful biogenic deposition of AgNPs and purity of prepared nanomaterials. Further, the synthesized NCs were utilized for photocatalytic degradation of various hazardous pollutants viz. Rhodamine-B (Rh-B) dye, Tetracycline (TCy) antibiotic, Imidacloprid (IMD) insecticide and deactivation of E. coli microbes. Amongst the synthesized NCs, 3wt% Ag@g-C3N4 NCs exhibited superior photocatalytic mitigation of Rh-B (99.26%, k=90.4 x 10-3 min-1), TCy (96.86%, k=40.2 x 10-3 min-1), IMD (95.7%, k=34.96 x 10-3 min-1) and E. coli deactivation (99.5%, k = 49.19 x 10-3 min-1). Moreover, the rate constants revealed many-fold increase in photocatalytic degradation of pollutants, contrary to pristine g-C3N4 (k = 11.8 x 10-3 min-1). This investigation also unveils an intricate photocatalytic mitigation pathway for the aforementioned-contaminants, elucidating key role of superoxide radical anions in photocatalytic mitigation. One of the significant highlights of this research is the sustainable and cost-effective synthesis methodology involving fennel seeds, which not only ensures the wide availability of resources but also guarantees environmental safety, in alignment with green principles.
Collapse
Affiliation(s)
- Sunny Garg
- Department of Chemistry, Panjab University Research Centre, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32-C, Chandigarh, 160030, India
| | - Manoj Kumar Choudhary
- Nanomaterial Research Laboratory, Department of Chemistry, Guru Nanak National College, Doraha, Ludhiana, Punjab, 141421, India.
| | - Jyoti Kataria
- Department of Chemistry, Panjab University Research Centre, Goswami Ganesh Dutta Sanatan Dharma College, Sector 32-C, Chandigarh, 160030, India
| |
Collapse
|
2
|
Mishra S, Chakinala N, Sethia G, Chakinala AG, Surolia PK. Enhanced photocatalytic performance of Bi-doped TiO 2 under sunlight and UV light: mechanistic insights and comparative analysis. Photochem Photobiol Sci 2024; 23:1495-1507. [PMID: 39008233 DOI: 10.1007/s43630-024-00609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Bismuth-doped metal oxides exhibit favourable photocatalytic features when exposed to both sunlight and UV light. In this approach, Bi0/TiO2 and Bi+3/TiO2 photocatalysts were prepared and their structural and optical properties are analysed using various characterization techniques. These developed photocatalysts were further tested for the photocatalytic elimination of Nitrobenzene in UV light and sunlight and compared with the performance of bare TiO2. The catalyst Bi+3/TiO2 performed better in UV light with 72.31% degradation, and 4.74 × 10-6 mol.litre-1.min-1 initial rate of reaction. However, when exposed to sunlight, Bi0/TiO2 outperformed with 73.85% degradation, and 4.63 × 10-6 mol.min-1 initial rate of reaction. This significant increase in photocatalytic activity of Bi0/TiO2 under sunlight could be accredited to increased light harvesting and enhanced efficiency in charge carrier separation, both of which were made possible by bismuth-induced surface plasmon resonance.
Collapse
Affiliation(s)
- Saurav Mishra
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Nandana Chakinala
- Chemical Reaction Engineering Laboratory, Department of Biotechnology and Chemical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Govind Sethia
- Inorganic Material and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anand G Chakinala
- Chemical Reaction Engineering Laboratory, Department of Biotechnology and Chemical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India.
| | - Praveen K Surolia
- Solar Energy Conversion and Nanomaterials Laboratory, Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
3
|
Multifunctional Photoabsorber for Highly Efficient Interfacial Solar Steam Generation and Wastewater Treatment. ChemistrySelect 2023. [DOI: 10.1002/slct.202204386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
The mechanism insight for improved photocatalysis and interfacial charges transfer of surface-dispersed Ag0 modified layered graphite-phase carbon nitride nanosheets. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Zhang C, Xiong W, Li Y, Lin L, Zhou X, Xiong X. Continuous inactivation of human adenoviruses in water by a novel g-C 3N 4/WO 3/biochar memory photocatalyst under light-dark cycles. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130013. [PMID: 36155297 DOI: 10.1016/j.jhazmat.2022.130013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Viruses transmitted by water have raised considerable concerns for public health. A novel memory photocatalyst of g-C3N4/WO3/biochar was successfully developed for effective inactivation of human adenoviruses (HAdVs) in water, in which WO3 as an electron-storage reservoir and biochar as an electron shuttle is employed to synergistically improve photocatalytic activity of g-C3N4. The tertiary composite exhibited continuous photocatalytic performance for HAdVs inactivation without regrowth in water under light-dark cycles, i.e., ∼3.9-log inactivation under 6-h visible light irradiation and an additional ∼1.1-log inactivation under the following 6-h dark. The enhanced virucidal mechanism was attributed to the heterojunction formation and especially the electron-transfer pathway switching via biochar incorporation, contributing to electron transfer and storage in the light phase and then electron release in the dark phase, along with obviously increased generation of the virus-killing •OH radicals under light-dark cycles.
Collapse
Affiliation(s)
- Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Wei Xiong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, Hubei 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan, Hubei 430010, PR China.
| | - Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Çiçek Özkan B, Selen V, Gülyüz F, Dursun G. Comparative Photocatalytic Activity and Total Organic Carbon Removal Efficiency of TiO
2
And ZnO for Reactive Black 5 Photodegradation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Betül Çiçek Özkan
- Department of Metallurgical and Materials Engineering Technology Faculty Fırat University 23279 Elazığ Turkey
| | - Veyis Selen
- Department of Bioengineering Engineering Faculty Fırat University 23279 Elazığ Turkey
| | - Feyza Gülyüz
- Department of Chemical Engineering Engineering Faculty Firat University 23279 Elazig Turkey
| | - Gülbeyi Dursun
- Department of Chemical Engineering Engineering Faculty Firat University 23279 Elazig Turkey
| |
Collapse
|
7
|
Enhanced photocatalytic nitrogen fixation on oxygen doped high specific surface area g-C3N4 under simulated sunlight. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Rasheed T. Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155279. [PMID: 35429563 DOI: 10.1016/j.scitotenv.2022.155279] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging class of new porous crystalline polymers materials having robust framework, outstanding structural regularity, highly ordered aperture size, inherent porosity, and chemical stability with designer properties, making them an ideal material for adsorbing a variety of contaminants from water bodies. Presented study focusses on the current advances and progress of pristine COFs as well as COFs based composites as an emerging substitute for the adsorption and removal of a variety of pollutants including water desalination technique, heavy metals, pharmaceuticals, dyes and organic pollutants. The absorption capabilities of COFs-derived architecture are evaluated and equated with those of other commonly used adsorbents. The interaction between sorption ability and structural property as well as some regularly utilized ways to improve the adsorption performance of COFs-based materials are also reviewed. Finally, perspective and a summary about the challenges and opportunities of COFs and COFs-derived materials are discussed to deliver some exciting data for fabricating and designing of COFs and COFs-derived materials for remediation of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
9
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Dong Y, Lin Y, Du C, Zhou C, Yang S. Manipulating hydropathicity/hydrophobicity properties to achieve anti-corrosion copper-based membrane toward high-efficient solar water purification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Karimi-Nazarabad M, Goharshadi EK. Decoration of graphene oxide as a cocatalyst on Bi doped g-C3N4 photoanode for efficient solar water splitting. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Karimi-Nazarabad M, Goharshadi EK, Mehrkhah R, Davardoostmanesh M. Highly efficient clean water production: Reduced graphene oxide/ graphitic carbon nitride/wood. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119788] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Hu X, Guo R, Hong L, Ji X, Pan W. Recent Progress in Quantum Dots Modified g‐C
3
N
4
‐based Composite Photocatalysts. ChemistrySelect 2021. [DOI: 10.1002/slct.202102952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xing Hu
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
| | - Rui‐tang Guo
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
- Shanghai Engineering Research Center of Power Generation Environment Protection Shanghai China 200090
| | - Long‐fei Hong
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
| | - Xiang‐yin Ji
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
| | - Wei‐guo Pan
- College of Energy and Mechanical Engineering Shanghai University of Electric Power Shanghai China 200090
- Shanghai Engineering Research Center of Power Generation Environment Protection Shanghai China 200090
| |
Collapse
|
14
|
Shams M, Balouchi H, Alidadi H, Asadi F, Goharshadi EK, Rezania S, Rtimi S, Anastopoulos I, Bonyadi Z, Mehranzamir K, Giannakoudakis DA. Coupling electrocoagulation and solar photocatalysis for electro- and photo-catalytic removal of carmoisine by Ag/graphitic carbon nitride: Optimization by process modeling and kinetic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Mehrkhah R, Goharshadi EK, Mohammadi M. Highly efficient solar desalination and wastewater treatment by economical wood-based double-layer photoabsorbers. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Ma X, Huo X, Hao K, Song L, Yu Q, Liu T, Wang Z. Visible Light Driven VO
2
/g‐C
3
N
4
Z‐Scheme Composite Photocatalysts for Selective Oxidation of DL‐1‐Phenylethyl Alcohol under Vis‐LEDs Irradiation and Aerobic Oxidation. ChemistrySelect 2021. [DOI: 10.1002/slct.202100141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xiuqiang Ma
- College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| | - Xiangyu Huo
- College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| | - Kun Hao
- College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| | - Liang Song
- College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| | - Qing Yu
- College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| | - Tong Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266000 China
| | - Zhongwei Wang
- College of Materials Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| |
Collapse
|
17
|
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation (N Y) 2021; 2:100076. [PMID: 34557733 PMCID: PMC8454561 DOI: 10.1016/j.xinn.2021.100076] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/03/2021] [Indexed: 11/05/2022] Open
Abstract
Covalent organic frameworks (COFs) are a new type of crystalline porous polymers known for chemical stability, excellent structural regularity, robust framework, and inherent porosity, making them promising materials for capturing various types of pollutants from aqueous solutions. This review thoroughly presents the recent progress and advances of COFs and COF-based materials as superior adsorbents for the efficient removal of toxic heavy metal ions, radionuclides, and organic pollutants. Information about the interaction mechanisms between various pollutants and COF-based materials are summarized from the macroscopic and microscopic standpoints, including batch experiments, theoretical calculations, and advanced spectroscopy analysis. The adsorption properties of various COF-based materials are assessed and compared with other widely used adsorbents. Several commonly used strategies to enhance COF-based materials' adsorption performance and the relationship between structural property and sorption ability are also discussed. Finally, a summary and perspective on the opportunities and challenges of COFs and COF-based materials are proposed to provide some inspiring information on designing and fabricating COFs and COF-based materials for environmental pollution management.
Collapse
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Hongwei Pang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Xuewei Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Qian Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Ning Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, P.R. China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, P.R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
18
|
Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions. Innovation (N Y) 2021; 2:100076. [DOI: https:/doi.org/10.1016/j.xinn.2021.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023] Open
|
19
|
Aminated graphitic carbon derived from corn stover biomass as adsorbent against antibiotic tetracycline: Optimizing the physicochemical parameters. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|