1
|
Improved Oxygen Reduction on GC-Supported Large-Sized Pt Nanoparticles by the Addition of Pd. Catalysts 2022. [DOI: 10.3390/catal12090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PdPt bimetallic nanoparticles on carbon-based supports functioning as advanced electrode materials have attracted attention due to their low content of noble metals and high catalytic activity for fuel cell reactions. Glassy carbon (GC)-supported Pt and PdPt nanoparticles, as promising catalysts for the oxygen reduction reaction (ORR), were prepared by the electrochemical deposition of Pt and the subsequent spontaneous deposition of Pd. The obtained electrodes were examined using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), and electroanalytical techniques. An XPS analysis of the PdPt/GC with the highest ORR performance revealed that the stoichiometric ratio of Pd: Pt was 1:2, and that both Pt and Pd were partially oxidized. AFM images of PdPt2/GC showed the full coverage of GC with PdPt nanoparticles with sizes from 100–300 nm. The ORR activity of PdPt2/GC in an acid solution approached that of polycrystalline Pt (E1/2 = 0.825 V vs. RHE), while exceeding it in an alkaline solution (E1/2 = 0.841 V vs. RHE). The origin of the improved ORR on PdPt2/GC in an alkaline solution is ascribed to the presence of a higher amount of adsorbed OH species originating from both PtOH and PdOH that facilitated the 4e-reaction pathway.
Collapse
|
2
|
Liu M, Xiao X, Li Q, Luo L, Ding M, Zhang B, Li Y, Zou J, Jiang B. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J Colloid Interface Sci 2021; 607:791-815. [PMID: 34536936 DOI: 10.1016/j.jcis.2021.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Oxygen reduction reaction (ORR) has gradually been in the limelight in recent years because of its great application potential for fuel cells and rechargeable metal-air batteries. Therefore, significant issues are increasingly focused on developing effective and economical ORR electrocatalysts. This review begins with the reaction mechanisms and theoretical calculations of ORR in acidic and alkaline media. The latest reports and challenges in ORR electrocatalysis are traced. Most importantly, the latest advances in the development of ORR electrocatalysts are presented in detail, including platinum group metal (PGM), transition metal, and carbon-based electrocatalysts with various nanostructures. Furthermore, the development prospects and challenges of ORR electrocatalysts are speculated and discussed. These insights would help to formulate the design guidelines for highly-active ORR electrocatalysts and affect future research to obtain new knowledge for ORR mechanisms.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China; College of Materials Science and Chemical Engineering, Harbin Engineering University, China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Laiyu Luo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Minghui Ding
- College of Materials Science and Chemical Engineering, Harbin Engineering University, China.
| | - Bin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, China; Institute of Petroleum Chemistry Heilongjiang Academy of Sciences, China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
3
|
Li G, Zhang W, Luo N, Xue Z, Hu Q, Zeng W, Xu J. Bimetallic Nanocrystals: Structure, Controllable Synthesis and Applications in Catalysis, Energy and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1926. [PMID: 34443756 PMCID: PMC8401639 DOI: 10.3390/nano11081926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
In recent years, bimetallic nanocrystals have attracted great interest from many researchers. Bimetallic nanocrystals are expected to exhibit improved physical and chemical properties due to the synergistic effect between the two metals, not just a combination of two monometallic properties. More importantly, the properties of bimetallic nanocrystals are significantly affected by their morphology, structure, and atomic arrangement. Reasonable regulation of these parameters of nanocrystals can effectively control their properties and enhance their practicality in a given application. This review summarizes some recent research progress in the controlled synthesis of shape, composition and structure, as well as some important applications of bimetallic nanocrystals. We first give a brief introduction to the development of bimetals, followed by the architectural diversity of bimetallic nanocrystals. The most commonly used and typical synthesis methods are also summarized, and the possible morphologies under different conditions are also discussed. Finally, we discuss the composition-dependent and shape-dependent properties of bimetals in terms of highlighting applications such as catalysis, energy conversion, gas sensing and bio-detection applications.
Collapse
Affiliation(s)
- Gaojie Li
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenshuang Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Qingmin Hu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
| | - Wen Zeng
- School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai 200444, China; (N.L.); (Z.X.); (Q.H.)
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
4
|
Choi J, Kwon S, Park Y, Kang K, Lee HM. In Silico High-Throughput Screening of Ag-Based Electrocatalysts for Anion-Exchange Membrane Fuel Cells. J Phys Chem Lett 2021; 12:5660-5667. [PMID: 34114817 DOI: 10.1021/acs.jpclett.1c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The alkaline environment in anion-exchange membrane fuel cells allows the use of Pt-free electrocatalysts, thus reducing the system cost. We performed a theoretical high-throughput study of various low-cost Ag-based oxygen reduction reaction anode electrocatalysts and assessed their catalytic performance using density functional theory. From the Materials Project database, a total of 106 binary Ag alloys were investigated by estimating their heat of formation, dissolution potential, and overpotential on low-index surfaces. We confirmed that EuAg5, BaAg5, and SrAg5 have higher catalytic activities and durabilities than pure Ag. By following the chemical trend of the results, we further proposed LaAg5 and PrAg5, which were not included in the database, as promising candidates. All candidates are in the space group P6/mmm and contain alkaline earth metal or lanthanide elements.
Collapse
Affiliation(s)
- Jungwoo Choi
- Department of Materials Science and Engineering, Korea Advanced Instittue of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soonho Kwon
- Department of Materials Science and Engineering, Korea Advanced Instittue of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, California 91125, United States
| | - Youngtae Park
- Department of Materials Science and Engineering, Korea Advanced Instittue of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ku Kang
- Department of Materials Science and Engineering, Korea Advanced Instittue of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Chemical Biological and Radiological Defense Research Institute, Seoul, Republic of Korea
| | - Hyuck Mo Lee
- Department of Materials Science and Engineering, Korea Advanced Instittue of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Sridharan M, Maiyalagan T. Enhanced oxygen reduction activity of bimetallic Pd–Ag alloy-supported on mesoporous cerium oxide electrocatalysts in alkaline media. NEW J CHEM 2021. [DOI: 10.1039/d1nj04102a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Currently, the rational design and fabrication of Pt-free electrocatalysts towards the oxygen reduction reaction for extensive applications in fuel cells is a challenging task.
Collapse
Affiliation(s)
- M. Sridharan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| | - T. Maiyalagan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India
| |
Collapse
|
6
|
Haile AS, Yohannes W, Mekonnen YS. Oxygen reduction reaction on Pt-skin Pt 3V(111) fuel cell cathode: a density functional theory study. RSC Adv 2020; 10:27346-27356. [PMID: 35516936 PMCID: PMC9055573 DOI: 10.1039/d0ra02972f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
Pt-non-precious transition metals (Pt-NPTMs) alloy electrocatalysts have gained considerable attention to develop cheaper and efficient electrocatalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). In this report, density functional theory (DFT) has been applied to study the catalytic activity of Pt-skin Pt3V(111) electrocatalyst for ORR in PEMFCs. The results revealed that the ORR intermediates (O, OH and OOH) have lower binding energies on Pt-skin Pt3V(111) compared to pure Pt(111) surface. The ORR on Pt-skin Pt3V(111) surface proceed via OOH dissociation with an activation energy of 0.33 eV. The formation of OH is found to be the rate determining step with an activation energy of 0.64 eV, which is even lower than in pure Pt(111) surface (0.72 eV). This indicates a better performance of Pt-skin Pt3V(111) for ORR compared to pure Pt(111) surface. Moreover, the DFT results revealed that the negative formation energy of the Pt3V alloy and the positive dissolution potential shift of the surface Pt atoms revealed the better stability of Pt-skin Pt3V(111) surface over pristine Pt(111) surface. Due to the improved activity and better stability, the new Pt3V alloy electrocatalyst is very promising for the development of low-cost and efficient PEMFCs.
Collapse
Affiliation(s)
- Asnake Sahele Haile
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Weldegebriel Yohannes
- Chemistry Department, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| | - Yedilfana Setarge Mekonnen
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University P.O. Box 1176 Addis Ababa Ethiopia
| |
Collapse
|