1
|
Nayak KH, Jijin RK, Sreelekha MK, Babu BP. Copper-catalyzed aerobic annulation of hydrazones with dienones: an efficient route to pyrazole-linked hybrid molecules. Org Biomol Chem 2024; 22:6631-6637. [PMID: 39104204 DOI: 10.1039/d4ob00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A copper-catalyzed aerobic [3 + 2] annulation reaction to access various pyrazole-bound chalcones starting from readily available and cost-effective hydrazones and dienones is reported. These pyrazole-bound chalcones were further utilized effectively to prepare a series of pyrazole-linked hybrid molecules, such as pyrazole-pyrazoline, pyrazole-aziridine, and pyrazole-pyridine hybrids by efficient simple transformations. Synthetically challenging hybrid molecules were obtained in a simple, two-step process with high atom economy under aerobic copper catalysis.
Collapse
Affiliation(s)
- Kalinga H Nayak
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| | - Robert K Jijin
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| | - Mariswamy K Sreelekha
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| | - Beneesh P Babu
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore, 575025, India.
| |
Collapse
|
2
|
Patra S, Patra P. A Brief Review on the Design, Synthesis and Biological Evaluation of Pyrazolo[ c]coumarin Derivatives. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2181827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Susanta Patra
- Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Prasanta Patra
- Department of Chemistry, Jhargram Raj College, Jhargram, WB 721507, India
| |
Collapse
|
3
|
Bhaskaran RP, Sreelekha MK, Babu BP. Metal‐free Synthesis of Trisubstituted Pyrazoles by the Reaction Between Hydrazones and Activated Olefins. ChemistrySelect 2022. [DOI: 10.1002/slct.202202773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| | - Mariswamy K. Sreelekha
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| | - Beneesh P. Babu
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore INDIA – 575025
| |
Collapse
|
4
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
5
|
Vellingiri A, Murugan D, Gnana Kumar G, Alagusundaram P. An elegant and efficient synthesis of heterocycles integrated with
bis
‐
N
‐acyl
pyrazoline and
bis
‐1, 2,
3‐triazole
via a green synthetic methodology. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Dinesh Murugan
- School of Chemistry, Madurai Kamaraj University Madurai India
| | | | | |
Collapse
|
6
|
Kurma SH, Sridhar B, Bhimapaka CR. Direct Access for the Regio- and Stereoselective Synthesis of N-Alkenylpyrazoles and Chromenopyrazoles. J Org Chem 2021; 86:2271-2282. [PMID: 33465310 DOI: 10.1021/acs.joc.0c02421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A highly regio- and stereoselective method was developed for the preparation of N-alkenylpyrazoles and chromenopyrazoles by the reaction of N-tosylhydrazones and salicyl N-tosylhydrazones with alkynes under neat conditions in the presence of La(OTf)3. The present study was found to be efficient and convenient for direct access to N-alkenylpyrazoles and chromenopyrazoles through C-C, C-N, and C-O bond forming reactions. Structure assignment of N-alkenylpyrazole compound 5c was confirmed by X-ray analysis.
Collapse
|
7
|
Bhaskaran RP, Nayak KH, Babu BP. Synthesis of functionalized benzo[1,3]dioxin-4-ones from salicylic acid and acetylenic esters and their direct amidation. RSC Adv 2021; 11:24570-24574. [PMID: 35481005 PMCID: PMC9036891 DOI: 10.1039/d1ra05032j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023] Open
Abstract
Direct synthesis of 4H-benzo[d][1,3]dioxin-4-one derivatives from salicylic acids and acetylenic esters (both mono- and disubstituted) has been described. The reaction is mediated by CuI and NaHCO3 in acetonitrile. Room temperature amidation of the synthesized 1,3-benzodioxinones with primary amines readily afforded the corresponding salicylamides in moderate to good yields. An efficient method for the synthesis of the active core 4H-benzo[d][1,3]dioxin-4-one followed by its direct room temperature amidation is reported.![]()
Collapse
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of Chemistry
- National Institute of Technology Karnataka – NITK
- Surathkal 575025
- India
| | - Kalinga H. Nayak
- Department of Chemistry
- National Institute of Technology Karnataka – NITK
- Surathkal 575025
- India
| | - Beneesh P. Babu
- Department of Chemistry
- National Institute of Technology Karnataka – NITK
- Surathkal 575025
- India
| |
Collapse
|
8
|
Zuo H, Qin J, Zhang W, Bashir MA, Yu Q, Zhao W, Wu G, Zhong F. Hemin-Catalyzed Oxidative Phenol-Hydrazone [3+3] Cycloaddition Enables Rapid Construction of 1,3,4-Oxadiazines. Org Lett 2020; 22:6911-6916. [PMID: 32830501 DOI: 10.1021/acs.orglett.0c02442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herein, we present a hemin-catalyzed oxidative phenol-hydrazone [3+3] cycloaddition that accommodates a broad spectrum of N-arylhydrazones, a class of less exploited 1,3-dipoles due to their significant Lewis basicity and weak tendency to undergo 1,2-prototropy to form azomethine imines. It renders expedient assembly of diversely functionalized 1,3,4-oxadiazines with excellent atom and step economy. Preliminary mechanistic studies point to the involvement of a one-electron oxidation pathway, which likely differs from the base-promoted aerobic oxidative scenario.
Collapse
Affiliation(s)
- Honghua Zuo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Jingyang Qin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Wentao Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Muhammad Adnan Bashir
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Qile Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, 3002 Lantian Road, Shenzhen 518118, China
| | - Guojiao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Fangrui Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
9
|
Bobrov PS, Kirik SD, Krasnov PO, Lyubyashkin AV, Suboch GA, Tovbis MS. Cyclocondensation of 2‐Hydroxyimino‐1‐(naphthalen‐1‐yl)butane‐1,3‐dione with Alkyl Hydrazines Leading to Substituted 4‐Nitrosopyrazoles. ChemistrySelect 2020. [DOI: 10.1002/slct.202002574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pavel S. Bobrov
- Department of Organic Chemistry and Technology of Organic Substances Reshetnev Siberian State University of Science and Technology 31 Krasnoyarskii Rabochii prospekt Krasnoyarsk 660037 Russian Federation
| | - Sergei D. Kirik
- Department of Inorganic and Physical Chemistry Siberian Federal University, 79 Svobodny Av. Krasnoyarsk 660041 Russian Federation
| | - Pavel O. Krasnov
- Laboratory of Non-Linear Optics and Spectroscopy Siberian Federal University 79 Svobodny Av. Krasnoyarsk 660041 Russian Federation
- Department of Technical Physics Reshetnev Siberian State University of Science and Technology 31 Krasnoyarskii Rabochii prospekt Krasnoyarsk 660037 Russian Federation
| | - Aleksey V. Lyubyashkin
- Department of Organic Chemistry and Technology of Organic Substances Reshetnev Siberian State University of Science and Technology 31 Krasnoyarskii Rabochii prospekt Krasnoyarsk 660037 Russian Federation
| | - Georgiy A. Suboch
- Department of Organic Chemistry and Technology of Organic Substances Reshetnev Siberian State University of Science and Technology 31 Krasnoyarskii Rabochii prospekt Krasnoyarsk 660037 Russian Federation
| | - Mikhail S. Tovbis
- Department of Organic Chemistry and Technology of Organic Substances Reshetnev Siberian State University of Science and Technology 31 Krasnoyarskii Rabochii prospekt Krasnoyarsk 660037 Russian Federation
| |
Collapse
|