1
|
Flor-López AF, Matute RA, Jaque P. Identifying reactive normal modes and their effect on regioselectivity in Myers-Saito and Schmittel cyclization of enyne-allenes: a combined perspective between the reaction force constant and statistical tools. Phys Chem Chem Phys 2025; 27:797-812. [PMID: 39660408 DOI: 10.1039/d4cp03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This paper presents a theoretical study on the distinguishable regiodivergent C2-C7 Myers-Saito and C2-C6 Schmittel routes of benzannelated enyne-allene cycloaromatizations, in which substitutions on the terminal alkyne by alkyl (-CH3, -CH2CH3, -CH(CH3)2 and -C(CH3)3) and aryl (-C6H5 and -C6H2(CH3)3) groups were included. Mechanistic differences were found between substituents attached to alkynes with and without α-H, whereas in the former the Schmittel cyclization proceeds together with 1,8-H migration, in the latter it does so as the sole primitive event. It was also observed that bulky substituents preferentially favor the C2-C6 Schmittel route, and the statistical prediction of regioselectivity is greatly affected when the ratio of accessible vibrational microstates of the transition states is included, especially in highly competing routes, i.e., ΔΔG‡ → 0. Aiming to gain a deeper understanding, an analysis based on reaction force F(ξ) and reaction force constant κ(ξ) was performed to gain insights into the competing routes. The reactive normal modes were unveiled by means of the correlation between κ(ξ) and the force constant of reaction modes κi(ξ), given by a statistical protocol based on the partial least square with vector importance in projection (PLS-VIP) method. These findings suggest how the vibrational energy can be reorganized in competing paths from a static approach.
Collapse
Affiliation(s)
- Andrés F Flor-López
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
- Centro de Modelamiento Molecular, Biofísica y Bioinformática, CM2B2, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| | - Ricardo A Matute
- Departamento de Química, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
- Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Pablo Jaque
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
- Centro de Modelamiento Molecular, Biofísica y Bioinformática, CM2B2, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile
| |
Collapse
|
2
|
Akagi Y, Watanabe H, Sakami T, Furumatsu S, Yamada S, Maki R, Okuda Y, Akashi H, Wakamatsu K, Kusano Y, Orita A. Synthesis of ( Z)-Enediynes via Stereoinvertive Nucleophilic Substitution of ( E)-Sulfonylethenes with Arylethynide, and Their Aggregation-Induced Optical Properties. J Org Chem 2024; 89:17122-17132. [PMID: 39454133 DOI: 10.1021/acs.joc.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
(Z)-Enediynes were successfully synthesized from a trio of terminal ethynes through consecutive three-step reactions: iodosulfonylation of ethyne with I2/PhSO2Na, followed by ethynylations of iodo and sulfonyl moieties of the resulting iodosulfonylethene via Sonogashira-Hagihara coupling and nucleophilic addition-elimination, respectively. The molecular structure of the obtained (Z)-enediyne was fully characterized by X-ray crystal structure analysis, revealing that the nucleophilic substitution of (E)-sulfonylethene with arylethynide underwent a selective stereoinversion. The (Z)-enediynes exhibited photoluminescence in both the solution and solid states (crystals and powders). Ph2N-substituted derivatives showed remarkable solvatofluorochromism, and upon replacing the solvent from toluene to acetonitrile, the emission color changed from blue to yellow.
Collapse
Affiliation(s)
- Yuta Akagi
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Hikaru Watanabe
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Toshiki Sakami
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Sou Furumatsu
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shunsuke Yamada
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Ryosuke Maki
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Yasuhiro Okuda
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Haruo Akashi
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Yoshihiro Kusano
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Akihiro Orita
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
3
|
Li X, Lu H, Ji M, Sun K, Pu F, Ding Y, Hu A. Synthesis and biological properties of maleimide-based macrocyclic lactone enediynes. Org Biomol Chem 2022; 20:5481-5488. [PMID: 35775821 DOI: 10.1039/d2ob00571a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural enediyne antibiotics are powerful DNA-cleavage agents due to the presence of the highly reactive hex-3-ene-1,5-diyne units. However, the complicated chemical structure and thermal instability make their synthesis, derivatization, and storage challenging. Heterocycle-fused enediynes, which exhibit strong antineoplastic activity, are promising analogues of natural enediynes for medicinal applications. To this end, a series of maleimide-based enediynes with macrocyclic lactone moieties were synthesized through the Sonagashira coupling reaction. Differential scanning calorimetry and electron paramagnetic resonance results showed that these macrocyclic enediynes exhibited a rather low onset temperature and the ability to generate radicals at physiological temperature. In addition, the structure-activity relationship of enediynes was analyzed by changing the ring size and the substituents on the propargyl group. Cellular experiments indicated that the diradicals produced by these enediynes efficiently cleaved DNA and disrupted the cell cycle distribution, and consequently induced tumor cell death via an apoptosis pathway at low half inhibitory concentrations. Computational studies suggested that the maleimide moiety promoted the propargyl-allenyl rearrangement of the cyclic enediyne, enabling the generation of diradical species through the Myers-Saito cyclization, and then abstracted hydrogen atoms from the H-donors.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Mingming Ji
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ke Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fangxu Pu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Cai Y, Lehmann F, Peiter E, Chen S, Zhu J, Hinderberger D, Binder WH. Bergman cyclization of main-chain enediyne polymers for enhanced DNA cleavage. Polym Chem 2022. [DOI: 10.1039/d2py00259k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design of novel polymers bearing multiple ene-diynes in the main chain are reported, allowing to tune activity of DNA cleavage via the Bergman cyclization.
Collapse
Affiliation(s)
- Yue Cai
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany
| | - Florian Lehmann
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle D-06099, Germany
| | - Senbin Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Dariush Hinderberger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany
| | - Wolfgang H. Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin-Luther-University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany
| |
Collapse
|
5
|
Lu H, Wang W, Li X, Zhang M, Cheng X, Sun K, Ding Y, Li X, Hu A. A carrier-free nanoparticle with dual NIR/acid responsiveness by co-assembly of enediyne and IR820 for combined PTT/chemotherapy. J Mater Chem B 2021; 9:4056-4064. [PMID: 33949615 DOI: 10.1039/d1tb00279a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combined photothermal therapy/chemotherapy by co-delivery of a photosensitizer (PS) and a chemotherapeutic drug has demonstrated great potential for cancer treatment. The intrinsic drawbacks of traditional drug delivery systems (DDSs), such as tedious synthetic procedures, side effects originated from the carrier materials, low loading efficiency, and uncontrolled drug release, however, have impaired their further advancement. On the other hand, enediyne antibiotics are highly cytotoxic toward cancer cells through the generation of lethal carbon radicals via thermal-induced cyclization, endowing them with great potential to achieve enhanced synergistic anticancer performance by incorporation with the photothermal effect of PS. To this end, a carrier-free and NIR/acid dual-responsive DDS was constructed for combined photothermal therapy/chemotherapy. The facile co-assembly of maleimide-based enediyne and PS IR820 was achieved in aqueous solution to give nanoparticles (EICN) with a hydrodynamic diameter of 90 nm and high stability. In vitro study confirmed the acid/NIR dual-responsive degradation and drug release, free radical generation and DNA-cleaving ability of EICN, which was accomplished by the corporation of enediyne and IR820 moieties. Further tests on HeLa cells verified the excellent synergistic anticancer performance of EICN including the improved cellular uptake, NIR-enhanced drug release, DNA damage and histone deacetylase inhibitor capacity. Overall, this carrier-free DDS with dual acid/NIR-responsivity would potentially provide new insights for the development of combined photothermal/chemotherapy.
Collapse
Affiliation(s)
- Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoxuan Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ke Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinxin Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Zhang M, Ma H, Li B, Sun K, Lu H, Wang W, Cheng X, Li X, Ding Y, Hu A. Nucleophilic Addition to Diradicals Derived From Cycloaromatization of Maleimide‐Based Enediynes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Ke Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Xiaoxuan Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Wang W, Lu H, Zhang M, Ma H, Cheng X, Ding Y, Hu A. Synthesis of maleimide-based enediynes with cyclopropane moieties for enhanced cytotoxicity under normoxic and hypoxic conditions. J Mater Chem B 2021; 9:4502-4509. [PMID: 34019610 DOI: 10.1039/d1tb00142f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myers-Saito cycloaromatization (MSC) is the working mechanism of many natural enediyne antibiotics with high antitumor potency. However, the presence of the equilibrium between diradical and zwitterionic intermediates in MSC severely hinders further improvement in cytotoxicity toward tumor cells. To this end, a series of maleimide-based enediynes with cyclopropane moieties were synthesized for enhanced cytotoxicity toward tumor cells. By taking advantage of radical clock reactions, the diradical intermediates generated from MSC would rearrange to new diradicals with much longer separation and weaker interactions between two radical centers. The computational study suggested a low energy barrier (4.4 kcal mol-1) for the radical rearrangement through the cyclopropane ring-opening process. Thermolysis experiments confirmed that this radical rearrangement results in the formation of a new diradical intermediate, followed by abstracting hydrogen atoms from 1,4-cyclohexadiene. Interestingly, the DNA cleavage ability and cytotoxicity of enediynes were significantly enhanced after the introduction of cyclopropane moieties. In addition, these maleimide-based enediynes exhibited a similar cytotoxicity under hypoxic conditions to that under normoxic conditions, which is beneficial for treating solid tumors where hypoxic environments frequently lead to deteriorated efficiency of many antitumor drugs. Docking studies indicated that the diradical intermediate was located between the minor groove of DNA with a binding energy of -7.40 kcal mol-1, which is in favor of intracellular DNA damage, and thereby inducing cell death via an apoptosis pathway as suggested by immunofluorescence analysis.
Collapse
Affiliation(s)
- Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Zhang M, Lu H, Li B, Ma H, Wang W, Cheng X, Ding Y, Hu A. Experimental and Computational Study on the Intramolecular Hydrogen Atom Transfer Reactions of Maleimide-Based Enediynes After Cycloaromatization. J Org Chem 2020; 86:1549-1559. [DOI: 10.1021/acs.joc.0c02401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|