1
|
Li Q, Zhou H, Li Z, Liu A, Wang E, Wu Y, Tang X, Du H, Jin L, Zhu H, Ni B, Wang Q. Efficient photocatalytic degradation of antibiotics using Z-scheme MIL-88(Fe)/Ti 3C 2/MoO 3: Mechanistic insights and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137051. [PMID: 39756323 DOI: 10.1016/j.jhazmat.2024.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Antibiotic residues cause water contamination and disrupt aquatic ecosystems. Herein, we reported the fabrication of a novel Z-scheme heterojunction, MIL-88A(Fe)/Ti3C2/MoO3 (MTO), for safe and efficient removal of antibiotics. Ti3C2 was introduced into the MIL-88A(Fe)/MoO3 (MO) heterojunction as an electronic mediator to accelerate charge separation. Consequently, the ternary MTO achieved a tetracycline (TC) degradation rate 2.5 times higher than that of MO. Notably, the MTO heterojunction maintained high TC degradation efficiency over 36 consecutive hours without significant decline. Photogenerated holes, hydroxyl radicals, and superoxide radicals synergistically led to efficient and deep mineralization of TC. Furthermore, toxicity assessments were performed using Toxicity Estimation Software Tool (T.E.S.T.), bacteria (S. aureus and E. coli) cultivation, wheat germination and cultivation. The results all confirmed the safe degradation of TC. Therefore, this study provides a promising strategy for photocatalytic removal of antibiotics and promotes sustainable water purification technologies.
Collapse
Affiliation(s)
- Qiang Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Zhou
- Hangzhou Hangda Environmental Protection Engineering Co., Ltd., Hangzhou, Zhejiang 310018, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Aoxiang Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Erpeng Wang
- Institute for Advanced Studies in Precision Materials, Yantai University, Yantai 264005, China
| | - Yanling Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Limin Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huayue Zhu
- Institute of Environmental Engineering Technology, Taizhou University, Taizhou 318000, China
| | - Bingjie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Darvishi S, Sadjadi S, Heravi M. Post-functionalized cellulose/metal-organic framework composite with sulfonic acid: An efficient, rapid and recyclable bio-based solid acid catalyst for the synthesis of 5-hydroxymethylfurfural. Int J Biol Macromol 2024; 281:135866. [PMID: 39477734 DOI: 10.1016/j.ijbiomac.2024.135866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
A new acid catalyst derived from renewable sources was developed using an ultrasound-assisted approach. This involved the formation of a metal-organic framework called MIL-88(Fe) in the presence of carboxymethylated-cellulose (CMC). Subsequently, the catalyst underwent a post-synthetic modification to introduce further acidic -SO3H groups into the structure of the CMC/MIL-88(Fe) composite. Various examinations were carried out that validated the successful creation of the CMC/MIL-88(Fe)-SO3H catalyst. The effectiveness of the catalyst was assessed in the process of solid acid catalysis, specifically in the dehydration of fructose to produce 5-hydroxymethylfurfural (HMF). Through the employment of Response Surface Method (RSM) optimization, it was determined that utilizing 34 wt% of the catalyst at a temperature of 90 °C for 30 min resulted in a remarkable 98 % HMF yield. The catalyst exhibited good reusability, as it retained its catalytic effectiveness throughout four consecutive cycles. Comparative catalytic investigations involving CMC and CMC/MIL-88(Fe) composite without sulfonation revealed the superior activity of CMC/MIL-88(Fe)-SO3H catalyst, emphasizing the collaborative effect of CMC, MIL-88(Fe), and the impact of post-functionalization with -SO3H on the performance of the catalyst.
Collapse
Affiliation(s)
- Sima Darvishi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Majid Heravi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
3
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2024:e2402630. [PMID: 39388416 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
4
|
Rathore LK, Bera A. Photo-Fenton-Active MIL-88A/CNT-Based PVA Hydrogel for Solar-Driven Water Evaporation and Simultaneous Volatile Organic Compound Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43670-43681. [PMID: 39136272 DOI: 10.1021/acsami.4c10367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Solar-driven interfacial water evaporation (SIWE) has emerged as a promising avenue for cost-effective freshwater production from seawater or wastewater. However, the simultaneous evaporation of volatile organic compounds (VOCs) presents a limitation for the widespread implementation of this technique. Thus, developing dual-functional evaporators capable of both desalining seawater and degrading VOCs is challenging. Herein, we fabricated an iron-based metal-organic framework MIL-88A/carbon nanotubes (CNTs) poly(vinyl alcohol) hydrogel (MCH) evaporator via the conventional freezing method for solar-driven seawater desalination and simultaneous photo-Fenton VOC degradation. Because of the superior photothermal conversion capability of CNTs, reduced thermal conductivity and water evaporation enthalpy within the hydrogel, and the photo-Fenton activity of rod-shaped MIL-88A, the MCH evaporator exhibits a higher evaporation rate of 2.26 kg m-2 h-1 under 1 sun illumination with simultaneous VOC degradation. The higher hydrophilicity and vertical channels in the MCH evaporator enable its self-salt cleaning ability, facilitating consistent seawater desalination, even in high salt concentrations up to 10 wt %. The synergistic effects of localized heating from CNTs and hydrogen peroxide activation through reactive sites of MIL-88A allow the MCH evaporator to degrade more than 93% of the added phenol during evaporation. This work presents a sustainable and efficient approach for solar-driven seawater desalination, offering simultaneous VOC degradation.
Collapse
Affiliation(s)
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu, J&K 181221, India
| |
Collapse
|
5
|
Kefayat A, Sartipzadeh O, Molaabasi F, Amiri M, Gholami R, Mirzadeh M, Shokati F, Khandaei M, Ghahremani F, Poursamar SA, Sarrami-Forooshani R. Microfluidic System Consisting of a Magnetic 3D-Printed Microchannel Filter for Isolation and Enrichment of Circulating Tumor Cells Targeted by Anti-HER2/MOF@Ferrite Core-Shell Nanostructures: A Theranostic CTC Dialysis System. Anal Chem 2024; 96:4377-4384. [PMID: 38442207 DOI: 10.1021/acs.analchem.3c03567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Low number of circulating tumor cells (CTCs) in the blood samples and time-consuming properties of the current CTC isolation methods for processing a small volume of blood are the biggest obstacles to CTC usage in practice. Therefore, we aimed to design a CTC dialysis system with the ability to process cancer patients' whole blood within a reasonable time. Two strategies were employed for developing this dialysis setup, including (i) synthesizing novel in situ core-shell Cu ferrites consisting of the Cu-CuFe2O4 core and the MIL-88A shell, which are targeted by the anti-HER2 antibody for the efficient targeting and trapping of CTCs; and (ii) fabricating a microfluidic system containing a three-dimensional (3D)-printed microchannel filter composed of a polycaprolactone/Fe3O4 nanoparticle composite with pore diameter less than 200 μm on which a high-voltage magnetic field is focused to enrich and isolate the magnetic nanoparticle-targeted CTCs from a large volume of blood. The system was assessed in different aspects including capturing the efficacy of the magnetic nanoparticles, CTC enrichment and isolation from large volumes of human blood, side effects on blood cells, and the viability of CTCs after isolation for further analysis. Under the optimized conditions, the CTC dialysis system exhibited more than 80% efficacy in the isolation of CTCs from blood samples. The isolated CTCs were viable and were able to proliferate. Moreover, the CTC dialysis system was safe and did not cause side effects on normal blood cells. Taken together, the designed CTC dialysis system can process a high volume of blood for efficient dual diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 15179-64311, Iran
- Department of Oncology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Omid Sartipzadeh
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 15179-64311, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 15179-64311, Iran
| | - Maryam Amiri
- Faculty of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 19839-63113, Iran
| | - Reza Gholami
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 15179-64311, Iran
| | - Motahareh Mirzadeh
- Research & Development Department, H.B. Adli Ltd., Isfahan 81746-73461, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 15179-64311, Iran
| | - Mansoureh Khandaei
- Biomaterials, Nanotechnology and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Fatemeh Ghahremani
- School of Paramedicine, Arak University of Medical Sciences, Arak 38196-93345, Iran
| | - Seyed Ali Poursamar
- Biomaterials, Nanotechnology and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Ramin Sarrami-Forooshani
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 15179-64311, Iran
| |
Collapse
|
6
|
Zhi K, Xu J, Li S, Luo L, Liu D, Li Z, Guo L, Hou J. Progress in the Elimination of Organic Contaminants in Wastewater by Activation Persulfate over Iron-Based Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:473. [PMID: 38470802 DOI: 10.3390/nano14050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
The release of organic contaminants has grown to be a major environmental concern and a threat to the ecology of water bodies. Persulfate-based Advanced Oxidation Technology (PAOT) is effective at eliminating hazardous pollutants and has an extensive spectrum of applications. Iron-based metal-organic frameworks (Fe-MOFs) and their derivatives have exhibited great advantages in activating persulfate for wastewater treatment. In this article, we provide a comprehensive review of recent research progress on the significant potential of Fe-MOFs for removing antibiotics, organic dyes, phenols, and other contaminants from aqueous environments. Firstly, multiple approaches for preparing Fe-MOFs, including the MIL and ZIF series were introduced. Subsequently, removal performance of pollutants such as antibiotics of sulfonamides and tetracyclines (TC), organic dyes of rhodamine B (RhB) and acid orange 7 (AO7), phenols of phenol and bisphenol A (BPA) by various Fe-MOFs was compared. Finally, different degradation mechanisms, encompassing free radical degradation pathways and non-free radical degradation pathways were elucidated. This review explores the synthesis methods of Fe-MOFs and their application in removing organic pollutants from water bodies, providing insights for further refining the preparation of Fe-MOFs.
Collapse
Affiliation(s)
- Keke Zhi
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| | - Jiajun Xu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Shi Li
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lingjie Luo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Dong Liu
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Zhe Li
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
- Department of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Lianghui Guo
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Junwei Hou
- Department of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
- State Key Laboratory, Heavy Oil Processing-Karamay Branch, Karamay 834000, China
| |
Collapse
|
7
|
Ghasemzadeh R, Akhbari K. Heterostructured Ag@MOF-801/MIL-88A(Fe) Nanocomposite as a Biocompatible Photocatalyst for Degradation of Reactive Black 5 under Visible Light. Inorg Chem 2023; 62:17818-17829. [PMID: 37856158 DOI: 10.1021/acs.inorgchem.3c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Heterostructured Ag@MOF-801/MIL-88A(Fe) nanocomposite was synthesized through template effects in metal-organic frameworks (MOFs). MIL-88A(Fe) was fabricated on a MOF-801 template using the internal extended growth method (IEGM) via polyvinylpyrrolidone (PVP) as the structure-director agent to create the MIL-88A(Fe)-on-MOF-801 heterostructure. The MOF-801/MIL-88A(Fe) heterostructure was used as a template for the formation of Ag nanoparticles (NPs) inside it via a double solvents method (DSM) combined with a photoreduction route (PR). To characterize synthesized samples to a high level of detail, PXRD, FT-IR, EDX, N2 adsorption-desorption isotherms, TEM, DRS, PL, EIS, and Mott-Sckottky measurements were used. The resulting Ag@MOF-801/MIL-88A(Fe) nanocomposite demonstrated the highest photocatalytic activity of 91.72% for the degradation of Reactive Black 5, after 30 min under visible light irradiation.
Collapse
Affiliation(s)
- Roghayyeh Ghasemzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
8
|
Yekkezare H, Tajik H, Mahmoodi NM. Green halogenation of aromatic compounds using environmentally friendly synthesized rod-like metal-organic framework (MIL-88A) catalyst. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
9
|
Pazhand H, Sabbagh Alvani AA, Sameie H, Salimi R, Poelman D. The Exact Morphology of Metal Organic Framework MIL‐53(Fe) Influences its Photocatalytic Performance**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hooman Pazhand
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Ali Asghar Sabbagh Alvani
- Department of Polymer Engineering & Color Technology Amirkabir University of Technology Tehran 1591634311 Iran
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
- Standard Research Institute Alborz 3174734563 Iran
| | - Hassan Sameie
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Reza Salimi
- Color & Polymer Research Center (CPRC) Amirkabir University of Technology Tehran 1591634311 Iran
| | - Dirk Poelman
- Department of Solid State Sciences Lumilab Ghent University Krijgslaan 281-S1 9000 Ghent Belgium
| |
Collapse
|
10
|
In Situ Electrospun Porous MIL-88A/PAN Nanofibrous Membranes for Efficient Removal of Organic Dyes. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020760. [PMID: 36677818 PMCID: PMC9860898 DOI: 10.3390/molecules28020760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
In recent years, metal-organic framework (MOF)-based nanofibrous membranes (NFMs) have received extensive attention in the application of water treatment. Hence, it is of great significance to realize a simple and efficient preparation strategy of MOF-based porous NFMs. Herein, we developed a direct in situ formation of MOF/polymer NFMs using an electrospinning method. The porous MOF/polymer NFMs were constructed by interconnecting mesopores in electrospun composite nanofibers using poly(vinylpolypyrrolidone) (PVP) as the sacrificial pore-forming agent. MOF (MIL-88A) particles were formed inside the polyacrylonitrile (PAN)/PVP nanofibers in situ during electrospinning, and the porous MIL-88A/PAN (pMIL-88A/PAN) NFM was obtained after removing PVP by ethanol and water washing. The MOF particles were uniformly distributed throughout the pMIL-88A/PAN NFM, showing a good porous micro-nano morphological structure of the NFM with a surface area of 143.21 m2 g-1, which is conducive to its efficient application in dye adsorption and removal. Specifically, the dye removal efficiencies of the pMIL-88A/PAN NFM for amaranth red, rhodamine B, and acid blue were as high as 99.2, 94.4, and 99.8%, respectively. In addition, the NFM still showed over 80% dye removal efficiencies after five adsorption cycles. The pMIL-88A/PAN NFM also presented high adsorption capacities, fast adsorption kinetics, and high cycling stabilities during the processes of dye adsorption and removal. Overall, this work demonstrates that the in situ electrospun porous MOF/polymer NFMs present promising application potential in water treatment for organic dyestuff removal.
Collapse
|
11
|
Bakhtian M, Khosroshahi N, Safarifard V. Efficient Removal of Inorganic and Organic Pollutants over a NiCo 2O 4@MOF-801@MIL88A Photocatalyst: The Significance of Ternary Heterojunction Engineering. ACS OMEGA 2022; 7:42901-42915. [PMID: 36467958 PMCID: PMC9713798 DOI: 10.1021/acsomega.2c05000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Energy problems are a substantial concern in a global society that can be solved by replacing with sustainable energies. In recent years, designing nanomaterials as photocatalysts that can produce chemical energy with the utilization of infinite visible light energy became a new solution for water treatment. In the present study, NiCo2O4@MOF-801 has been synthesized with multiple properties, and then, a novel three-layer NiCo2O4@MOF-801@MIL88A photocatalyst has been successfully synthesized to improve meropenem degradation and Cr(VI) reduction. The prepared photocatalyst was characterized by XRD, IR, XPS, TEM, SEM, TGA, BET, EIS, PL, and UV-vis. According to the structural and optical analysis performed, the interaction between the components formed a heterojunction structure that prevented the recombination of charge carriers and increased the photocatalytic performance. Photocatalytic simulation tests also proved the reduction of chromium and degradation of antibiotics to find the optimal heterogeneous performance. As a result, the NiCo2O4@MOF-801@MIL88A composite can completely reduce Cr(VI) in 45 min, which is strongly preferable to any pure component's performance. Overall, this work offers a low-cost but high-efficiency material that can remove organic and inorganic contaminants from water.
Collapse
|
12
|
Investigation of the immobilized methyl parathion hydrolase from Azohydromonas australica onto metal-organic frameworks (MOFs) MIL-88A. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Synthesis of magnetic Cu/CuFe2O4@MIL-88A(Fe) nanocomposite and application to dispersive solid-phase extraction of chlorpyrifos and phosalone in water and food samples. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Vigneshwaran S, Sirajudheen P, Karthikeyan P, Nikitha M, Ramkumar K, Meenakshi S. Immobilization of MIL-88(Fe) anchored TiO 2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: Characterization, mechanism and degradation intermediates. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124728. [PMID: 33310324 DOI: 10.1016/j.jhazmat.2020.124728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 05/20/2023]
Abstract
In this study, we have rationally designed and grafted a bio-assisted 2D/2D TiO2/MIL-88(Fe) (TCS@MOF) heterojunction by growing granular TiO2 on the surface of MIL-88(Fe) nanosheet, as hybrid photocatalyst. The hierarchical TCS@MOF composite was prepared via the one-pot solvothermal process and employed for monocrotophos (MCP) degradation under visible light region, since its persistent nature on soil and water causes major threat to the environment. The TCS@MOF promotes a number of packed high-speed nano-tunnels in the (p-n) heterojunctions, which significantly enhance the migration of photo-induced electrons (e-) and holes (h+), respectively and thus limits the charge recombination of e-s. The optimized photocatalyst achieves significant catalytic activity of ~98.79% for the degradation of MCP within 30 min of irradiation. The prominent oxidative radicals namely •OH, •O2- etc., were involved in the oxidation of organic pesticide. Besides, TCS@MOF exhibits outstanding stability even after five repetitive cycles for the oxidation of MCP with a negligible decrease in photo-activity. The proposed mechanism and oxidative pathways of MCP were rationally deduced in detail subject to experimental results. The mechanism renders insight into the oxidation and consequent bond rupture of pollutant as well as into the formation of products such as H2O, CO2, etc. This report unveils a novel architecture of proficiently optimized TCS@MOF material structure for the perceptive oxidation of organic contaminants.
Collapse
Affiliation(s)
- Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, 676306, Malappuram, Kerala, India.
| | - Perumal Karthikeyan
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Manuvelraja Nikitha
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Krishnapillai Ramkumar
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
15
|
Viswanathan VP, Divya KS, Dubal DP, Adarsh NN, Mathew S. Ag/AgCl@MIL-88A(Fe) heterojunction ternary composites: towards the photocatalytic degradation of organic pollutants. Dalton Trans 2021; 50:2891-2902. [PMID: 33544106 DOI: 10.1039/d0dt03147j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The efficient utilization of solar energy has received tremendous interest due to the increasing environmental and energy concerns. The present paper discusses the efficient integration of a plasmonic photocatalyst (Ag/AgCl) with an iron-based metal-organic framework (MIL-88A(Fe)) for boosting the visible light photoreactivity of MIL-88A(Fe). Two composites of Ag/AgCl@MIL-88A(Fe), namely MAG-1 and MAG-2 (stoichiometric ratio of Fe to Ag is 5 : 1 and 2 : 1), were successfully synthesized via facile in situ hydrothermal methods followed by UV reduction. The synthesized composite materials are characterized by FTIR, PXRD, UVDRS, PL, FESEM/EDX, TEM and BET analyses. The Ag/AgCl@MIL-88A(Fe) (MAG-2) hybrid system shows excellent photocatalytic activity for the degradation of p-nitrophenol (PNP), rhodamine B (RhB), and methylene blue (MB) under sunlight. We found that 91% degradation of PNP in 80 min, 99% degradation of RhB in 70 min and 94% degradation of MB in 70 min have taken place by using MAG-2 as a catalyst under sunlight. The superior activity of Ag/AgCl@MIL-88A(Fe) (MAG-2) is attributed to the synergistic effects from the surface plasmon resonance (SPR) of Ag NPs and the electron transfer from MIL-88A(Fe) to Ag nanoparticles for effective separation of electron-hole pairs. Furthermore, the mechanism of degradation of PNP, RhB and MB is proposed by analyzing the electron transfer pathway in Ag/AgCl@MIL-88A(Fe).
Collapse
Affiliation(s)
- Vandana P Viswanathan
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| | | | | | | | | |
Collapse
|