1
|
Hill LR, New EJ, Faulkner S. Discrimination of nucleoside phosphates using principal component analysis of spectral changes in a single europium complex. Chem Commun (Camb) 2025; 61:1633-1636. [PMID: 39744841 DOI: 10.1039/d4cc05815a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Here we present the first use of principal component analysis of the full spectrum of a single europium complex to differentiate between structurally-similar analytes. We demonstrate that it can be used to distinguish between the nucleoside phosphate guests AMP, ADP, and ATP.
Collapse
Affiliation(s)
- Leila R Hill
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, UK.
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, UK.
| |
Collapse
|
2
|
Shukla N, Singhmar V, Sayala J, Patra AK. A Multifaceted Luminescent Europium(III) Probe for the Discrimination of Nucleoside Phosphates and Detection of Organophosphate Nerve Agents. Inorg Chem 2025. [PMID: 39798099 DOI: 10.1021/acs.inorgchem.4c03955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis. Furthermore, developing reliable, easy-to-use optical sensors for extremely toxic organophosphonates/nerve-agents is critical to counter public health threats. Luminescent lanthanide(III) complexes have emerged as promising optical bioprobes owing to intraconfigurational f → f transitions. Herein, we present strategically designed Eu(III) probes: [Eu(THC)(X)3]Cl (Eu.1) and [Eu(TBC)(X)3]Cl/Br (Eu.2) containing pentadentate terpyridine dicarboxylates: 4'-(3,4,5-trihydroxyphenyl)-[2,2':6',2″-terpyridine]-6,6″-dicarboxylic acid (THC) and 4'-phenyl-[2,2':6',2″-terpyridine]-6,6″-dicarboxylic acid (TBC) and X = solvent. The Eu.1 probe is systematically evaluated for discrimination of various NPs and as a luminescent chemodosimetric probe for diethyl chlorophosphate (DCP) as a G-series nerve agent mimic. The time-delayed luminescence is used for discrimination between various adenine-based NPs under physiological conditions. The Eu.1 probe shows high affinity and selectivity for ADP enabling continuous monitoring of the ADP/ATP ratio in a simulated enzymatic reaction. Additionally, Eu.1 acted as a chemodosimetric probe for DCP. The interaction produces a change in the sensitization pathway, enhancing the Eu(III)-based luminescence with a ppb level of detection of DCP (LOD = 758 ppb). Our innovative approach expands applications of lanthanide luminescence for probing nucleotides and the detection of lethal nerve agents.
Collapse
Affiliation(s)
- Nitin Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Virjesh Singhmar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Juhi Sayala
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
4
|
Sahoo J, Krishnaraj C, Sun J, Bihari Panda B, Subramanian PS, Sekhar Jena H. Lanthanide based inorganic phosphates and biological nucleotides sensor. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Martinon TLM, Pierre VC. Luminescent Lanthanide Probes for Inorganic and Organic Phosphates. Chem Asian J 2022; 17:e202200495. [PMID: 35750633 PMCID: PMC9388549 DOI: 10.1002/asia.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Indexed: 11/09/2022]
Abstract
Inorganic and organic phosphates-including orthophosphate, nucleotides, and DNA-are some of the most fundamental anions in cellular biology, regulating numerous processes of both medical and environmental significance. The characteristic long lifetimes of emitting lanthanides, including the brighter europium(III) and terbium(III), make them ideally suited for the development of molecular probes for the detection of phosphates directly in complex aqueous media. Moreover, given their high oxophilicity and the exquisite sensitivity of their quantum yields to their hydration number, those luminescent lanthanides are perfect for the detection of phosphates. Herein we discuss the principles that have guided the recent developments of molecular probes selective for inorganic or organic phosphates and how these lanthanide complexes facilitate the study of numerous biological processes.
Collapse
Affiliation(s)
- Thibaut L. M. Martinon
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| | - Valérie C. Pierre
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| |
Collapse
|
6
|
Elenkova D, Lyapchev R, Romanova J, Morgenstern B, Dimitrova Y, Dimov D, Tsvetkov M, Zaharieva J. Luminescent Complexes of Europium (III) with 2-(Phenylethynyl)-1,10-phenanthroline: The Role of the Counterions. Molecules 2021; 26:molecules26237272. [PMID: 34885868 PMCID: PMC8658859 DOI: 10.3390/molecules26237272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
New antenna ligand, 2-(phenylethynyl)-1,10-phenanthroline (PEP), and its luminescent Eu (III) complexes, Eu(PEP)2Cl3 and Eu(PEP)2(NO3)3, are synthesized and characterized. The synthetic procedure applied is based on reacting of europium salts with ligand in hot acetonitrile solutions in molar ratio 1 to 2. The structure of the complexes is refined by X-ray diffraction based on the single crystals obtained. The compounds [Eu(PEP)2Cl3]·2CH3CN and [Eu(PEP)2(NO3)3]∙2CH3CN crystalize in monoclinic space group P21/n and P21/c, respectively, with two acetonitrile solvent molecules. Intra- and inter-ligand π-π stacking interactions are present in solid stat and are realized between the phenanthroline moieties, as well as between the substituents and the phenanthroline units. The optical properties of the complexes are investigated in solid state, acetonitrile and dichloromethane solution. Both compounds exhibit bright red luminescence caused by the organic ligand acting as antenna for sensitization of Eu (III) emission. The newly designed complexes differ in counter ions in the inner coordination sphere, which allows exploring their influence on the stability, molecular and supramolecular structure, fluorescent properties and symmetry of the Eu (III) ion. In addition, molecular simulations are performed in order to explain the observed experimental behavior of the complexes. The discovered structure-properties relationships give insight on the role of the counter ions in the molecular design of new Eu (III) based luminescent materials.
Collapse
Affiliation(s)
- Denitsa Elenkova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
- Correspondence: ; Tel.:+359-2-8161325
| | - Rumen Lyapchev
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Julia Romanova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Bernd Morgenstern
- Department of Inorganic Solid-State Chemistry, Saarland University, 66123 Saarbrücken, Germany;
| | - Yana Dimitrova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Deyan Dimov
- Institute of Optical Materials and Technologies, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| | - Martin Tsvetkov
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Joana Zaharieva
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| |
Collapse
|
7
|
Zhu R, Zhang Z, Li J, Yan L. Carbon‐ZnO Composite Synthesized from ZIF‐8 Depositing Vegetable Biomass for Efficient Removal of Phosphate from Aqueous Solution. ChemistrySelect 2021. [DOI: 10.1002/slct.202100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rixin Zhu
- School of Water Conservancy and Environment University of Jinan Jinan 250022 PR China
| | - Zhaoran Zhang
- Jinan Environmental Research Academy Jinan 250100 PR China
| | - Jing Li
- School of Water Conservancy and Environment University of Jinan Jinan 250022 PR China
| | - Liangguo Yan
- School of Water Conservancy and Environment University of Jinan Jinan 250022 PR China
| |
Collapse
|
8
|
A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|