1
|
Ghosh A, Pandey A, Sengupta A, Kathirvelu V, Harmalkar SS, Dhuri SN, Singh KS, Ghanty TK. Experimental and Theoretical Investigation on the Extractive Mass Transfer of Eu 3+ Ions Using Novel Amide Ligands in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Inorg Chem 2023; 62:14678-14693. [PMID: 37624686 DOI: 10.1021/acs.inorgchem.3c01963] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Novel amide ligands in the ionic liquid (1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) were utilized for the liquid-liquid biphasic mass transfer of Eu3+ ions from aqueous acidic waste solution. The cation exchange mechanism was found to be operative with the formation of [Eu(NO3)2L3]+ species (L = 4-chloro-N-(1-methyl-1H-pyrazol-3-yl)picolinamide). However, the presence of an inner-sphere water molecule was revealed by density functional theory (DFT) calculations. The viscosity-induced slower kinetics was evidenced during mass transfer, which was improved by increasing temperature. The process was exothermic in nature. The improvement in the kinetics of extractive mass transfer at higher temperatures is evinced by a reduction in the distribution ratio value. The spontaneity of the reaction was evidenced through the negative Gibbs free energy value, whereas the process enhances the entropy of the system, probably by releasing water molecules at least partially during complexation. The structures of bare ligands and complexes have been optimized by using DFT calculations. A high value of complexation energy, solvation energy, and associated enthalpy and free energy change reveal the efficacy in binding Eu with O and N donor atoms. In addition, natural population analysis, atoms-in-molecules analysis, and energy decomposition analysis have been employed to explore the nature of bonding existing in Eu-O and Eu-N bonds.
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Amit Pandey
- Department of Applied Sciences, National Institute of Technology Goa, Ponda, Goa 403401, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- HomiBhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Velavan Kathirvelu
- Department of Applied Sciences, National Institute of Technology Goa, Ponda, Goa 403401, India
| | | | - Sunder N Dhuri
- School of Chemical Sciences, Goa University, Taleigao, Goa 403206, India
| | - Keisham S Singh
- Bioorganic Chemistry Laboratory, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Tapan K Ghanty
- HomiBhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
2
|
Sharma V, Sengupta A, Acharya R, Bagla HK. Applications of Energy Dispersive X‐Ray Fluorescence Spectrometry and Direct Current Arc Atomic Emission Spectroscopy Methods for Grouping Study of Automobile Windshield Glasses for Glass Forensics. ChemistrySelect 2023. [DOI: 10.1002/slct.202204901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Samanta SK, Das P, Sengupta A, Acharya R. Optimization of external (in air) particle induced gamma-ray emission (PIGE) methodology for rapid, non-destructive, and simultaneous quantification of fluorine, sodium, and phosphorus in nuclear waste immobilization matrices. RSC Adv 2022; 12:32684-32692. [DOI: 10.1039/d2ra06163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
External (in air) PIGE methodology has been optimized for rapid quantification of fluorine, sodium, and phosphorus in fluorapatite waste immobilization matrices for Molten Salt Reactor (MSR).
Collapse
Affiliation(s)
- S. K. Samanta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- HomiBhabha National Institute, Department of Atomic Energy, Mumbai-400094, India
| | - P. Das
- Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- HomiBhabha National Institute, Department of Atomic Energy, Mumbai-400094, India
| | - A. Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- HomiBhabha National Institute, Department of Atomic Energy, Mumbai-400094, India
| | - R. Acharya
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- HomiBhabha National Institute, Department of Atomic Energy, Mumbai-400094, India
| |
Collapse
|