1
|
Rodríguez-Flores T, Hernández-Pérez I, de la Huerta-Hernández GE, Suárez-Parra R, Haro-Pérez C. Sonocatalytic degradation of RB-5 dye using ZnO nanoparticles doped with transition metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35776-4. [PMID: 39704975 DOI: 10.1007/s11356-024-35776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
In this study, ZnO was doped and co-doped with rhodium and tungsten to assess the impact of these transition metals on the sonocatalytic degradation of reactive black 5 azo dye (RB-5). Structural analysis revealed that doping ZnO with 1% Rh and W does not alter its wurtzite hexagonal structure, although minor changes in cell parameters were observed due to differences in electronic density. Interestingly, co-doping resulted in lower degradation efficiency than single doping, with W-ZnO emerging as the most effective catalyst, achieving 100% RB-5 degradation within 60 min, likely due to a higher density of oxygen vacancies and hydroxyl groups. Moreover, a 2k factorial design identified optimal sonocatalytic conditions for W-ZnO, including a catalyst concentration of 0.75 g/L, a power tip of 225 W, and a hydrogen peroxide volume of 27 μL. The findings highlight the potential for doped ZnO nanoparticles in advanced oxidation processes and green chemistry applications, making this method an environmentally friendly alternative for wastewater treatment.
Collapse
Affiliation(s)
- Tatiana Rodríguez-Flores
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 420, C.P. 02128, Mexico City, Mexico
| | - Isaías Hernández-Pérez
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 420, C.P. 02128, Mexico City, Mexico.
| | | | - Raúl Suárez-Parra
- Departamento de Materiales Solares, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco S/N, C.P. 62580, Temixco, Morelos, Mexico
| | - Catalina Haro-Pérez
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 420, C.P. 02128, Mexico City, Mexico
| |
Collapse
|
2
|
Palanisamy G, Bhosale M, Magdum SS, Thangarasu S, Oh TH. Hybridization of Polymer-Encapsulated MoS 2-ZnO Nanostructures as Organic-Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation. Polymers (Basel) 2024; 16:2213. [PMID: 39125239 PMCID: PMC11314569 DOI: 10.3390/polym16152213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An efficient synergistic combination of MZ was identified by altering the ratio, and its influence on PVDF was assessed using diverse structural, morphological, and sonocatalytic performances. The PMZ film demonstrated very effective sonocatalytic characteristics by degrading rhodamine B (RhB) dye with a degradation efficiency of 97.23%, whereas PVDF only degraded 17.7%. Combining MoS2 and ZnO reduces electron-hole recombination and increases the sonocatalytic degradation performance. Moreover, an ideal piezoelectric PVDF polymer with MZ enhances polarization to improve redox processes and dye degradation, ultimately increasing the degradation efficiency. The degradation efficiency of RhB was seen to decrease while employing isopropanol (IPA) and p-benzoquinone (BQ) due to the presence of reactive oxygen species. This suggests that the active species •O2- and •OH are primarily responsible for the degradation of RhB utilizing PMZ2 film. The PMZ film exhibited improved reusability without substantially decreasing its catalytic activity. The superior embellishment of ZnO onto MoS2 and effective integration of MZ into the PVDF polymer film results in improved degrading performance.
Collapse
Affiliation(s)
- Gowthami Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.B.); (S.S.M.); (S.T.)
| | | | | | | | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.B.); (S.S.M.); (S.T.)
| |
Collapse
|
3
|
Zhan F, Wen G, Li R, Feng C, Liu Y, Liu Y, Zhu M, Zheng Y, Zhao Y, La P. A comprehensive review of oxygen vacancy modified photocatalysts: synthesis, characterization, and applications. Phys Chem Chem Phys 2024; 26:11182-11207. [PMID: 38567530 DOI: 10.1039/d3cp06126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Photocatalytic technology is a novel approach that harnesses solar energy for efficient energy conversion and effective pollution abatement, representing a rapidly advancing field in recent years. The development and synthesis of high-performance semiconductor photocatalysts constitute the pivotal focal point. Oxygen vacancies, being intrinsic defects commonly found in metal oxides, are extensively present within the lattice of semiconductor photocatalytic materials exhibiting non-stoichiometric ratios. Consequently, they have garnered significant attention in the field of photocatalysis as an exceptionally effective means for modulating the performance of photocatalysts. This paper provides a comprehensive review on the concept, preparation, and characterization methods of oxygen vacancies, along with their diverse applications in nitrogen fixation, solar water splitting, CO2 photoreduction, pollutant degradation, and biomedicine. Currently, remarkable progress has been made in the synthesis of high-performance oxygen vacancy photocatalysts and the regulation of their catalytic performance. In the future, it will be imperative to develop more advanced in situ characterization techniques, conduct further investigations into the regulation and stabilization of oxygen vacancies in photocatalysts, and comprehensively comprehend the mechanism underlying the influence of oxygen vacancies on photocatalysis. The engineering of oxygen vacancies will assume a pivotal role in the realm of semiconductor photocatalysis.
Collapse
Affiliation(s)
- Faqi Zhan
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Guochang Wen
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Ruixin Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Chenchen Feng
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yisi Liu
- Institute of Advanced Materials, Hubei Normal University, Huangshi, 415000, China
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Min Zhu
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yuehong Zheng
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yanchun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Peiqing La
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
4
|
Sarvothaman VP, Velisoju VK, Subburaj J, Panithasan MS, Kulkarni SR, Castaño P, Turner J, Guida P, Roberts WL, Nagarajan S. Is cavitation a truly sensible choice for intensifying photocatalytic oxidation processes? - Implications on phenol degradation using ZnO photocatalysts. ULTRASONICS SONOCHEMISTRY 2023; 99:106548. [PMID: 37556973 PMCID: PMC10433233 DOI: 10.1016/j.ultsonch.2023.106548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Phenols are recalcitrant compounds that constitute the majority of organic contaminants in industrial wastewaters. Their removal at large scales require a combination of various processes to reach the desired discharge quality. An extensive body of work has already been published in the area of phenol removal from wastewater, however none of them have focussed on a truly 'sensible' approach for coupling advanced oxidation processes (AOPs). Rather, a higher removal efficiency was targeted by unduly complicating the process by combining multiple AOPs. The most influential AOP as the primary method typically driven by the nature of the pollutant should form the basis for a hybrid AOP followed by a complementary AOP to intensify the oxidation process. This strategy is lacking in current literature. We address this knowledge gap directly by systematically identifying the best hybrid process for ZnO mediated photocatalysis of phenol. Either a cavitation mediated pre-treatment of ZnO or cavitation-photocatalysis-peroxide based hybrid AOP was investigated. While the pre-treatment approach led to >25% increase in phenol oxidation compared to bare ZnO photocatalysis, the hydrodynamic cavitation-photocatalysis-peroxide based system was found to have a cavitational yield 5 times higher than its acoustic cavitation counterpart. A new phenomenon known as the 'pseudo staggered effect' was also observed and established in hydrodynamic cavitation mediated photocatalysis-peroxide hybrid process for the first time. While we demonstrated that cavitation is a truly 'sensible' choice to enhance photocatalysis, the nature of the pollutant under investigation must always be the key driver when designing such hybrid AOPs.
Collapse
Affiliation(s)
- Varaha P Sarvothaman
- Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vijay K Velisoju
- Multiscale Reaction Engineering (MuRE) Group, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Janardhanraj Subburaj
- Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mebin S Panithasan
- Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shekhar R Kulkarni
- Multiscale Reaction Engineering (MuRE) Group, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Pedro Castaño
- Multiscale Reaction Engineering (MuRE) Group, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - James Turner
- Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Paolo Guida
- Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - William L Roberts
- Clean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sanjay Nagarajan
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Centre for Sustainable Energy Systems, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
5
|
Popova S, Tazetdinova V, Pavlova E, Matafonova G, Batoev V. Characteristics and Sonophotocatalytic Activity of Natural Sphalerite under Ultrasonic (1.7 MHz) and UVA LED (365 nm) Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5412. [PMID: 35955346 PMCID: PMC9369715 DOI: 10.3390/ma15155412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Naturally occurring sono- and photoactive minerals, which are abundant on Earth, represent an attractive alternative to the synthesized sonophotocatalysts as cost-effective materials for water and wastewater treatment. This study focuses on characterizing and evaluating the sonophotocatalytic activity of natural sphalerite (NatS) from Dovatka deposit (Siberia) under high-frequency ultrasonic (US, 1.7 MHz) and ultraviolet light-emitting diodes (UVA LED, 365 nm) irradiation towards degradation of 4-chlorophenol as a model organic pollutant. Since raw natural sphalerite did not exhibit a measurable photocatalytic activity, it was calcined at 500, 900 and 1200 °C. The natural sphalerite after calcination at 900 °C (NatS*) was found to be the most effective for sonophotocatalytic degradation of 4-chlorophenol, attaining the highest efficiency (55%, 1 h exposure) in the following row: UV < US ≈ UV/US ≈ US/NatS* < UV/NatS* < UV/US/NatS*. Addition of 1 mM H2O2 increased the removal to 74% by UV/US/NatS*/H2O2 process. An additive effect between UV/NatS* and US/NatS* processes was observed in the sonophotocatalytic system as well as in the H2O2-assisted system. We assume that the sonophotocatalytic hybrid process, which is based on the simultaneous use of high-frequency ultrasound, UVA light, calcined natural sphalerite and H2O2, could provide a basis of an environmentally safe and cost-effective method of elimination of organic pollutants from aqueous media.
Collapse
Affiliation(s)
- Svetlana Popova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, 670047 Ulan-Ude, Russia
| | | | - Erzhena Pavlova
- Chemistry Department, Buryat State University, 670000 Ulan-Ude, Russia
| | - Galina Matafonova
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, 670047 Ulan-Ude, Russia
| | - Valeriy Batoev
- Laboratory of Engineering Ecology, Baikal Institute of Nature Management SB RAS, 670047 Ulan-Ude, Russia
| |
Collapse
|
6
|
The sono-photocatalytic performance of a Fe2O3 coated TiO2 based hybrid nanofluid under visible light via RSM. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|