1
|
Hashem HM, Ghaith EA, Eladl A, Abozeid SM, Abdallah AB. A novel fluorescent probe based imprinted polymer-coated magnetite for the detection of imatinib leukemia anti-cancer drug traces in human plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124262. [PMID: 38613900 DOI: 10.1016/j.saa.2024.124262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Myeloid leukemia is a chronic cancer, which associated with abnormal BCR-ABL tyrosine kinase activity. Imatinib (IMB) acts as a tyrosine kinase inhibitor and averts tumor growth in cancer cells by controlling cell division, so it is urgent to develop an effective assay to detect and monitor its IMB concentration. Therefore, an innovative fluorescent biomimetic sensor is a promising sensing material that constructed for the efficient recognition of IMB and displays excellent selectivity and sensitivity stemming from molecularly imprinted polymer@Fe3O4 (MIP@Fe3O4). The detection strategy depends on the recognition of IMB molecules at the imprinted sites in the presence of coexisting molecules, which are then transferred to the fluorescence signal. The synthesized MIP@Fe3O4 was characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Furthermore, computational studies of the band gap (EHOMO-ELUMO) of the monomers, IMB, and their complexes were performed. These results confirmed that the copolymer is the most appropriate and has high stability (Binding energy; 0.004 x 10-19 KJ) and low reactivity. A comprehensive linear response over IMB concentrations from 5 × 10-6 mol/L to 8 × 10-4 mol/L with a low detection limit of 9.3 × 10-7 mol/L was achieved. Furthermore, the proposed technique displayed long-term stability (over 2 months), high intermediate precision (RSD<2.1 %), good reproducibility (RSD <1.9 %), and outstanding selectivity toward IMB over analogous molecules with similar chemical and spatial structure (no interference by 100 to 150-fold of the competitors). Owing to these merits, the proposed fluorescence sensor was utilized to detect IMB in drug tablets and human plasma, and satisfactory results (99.3-100.4 %) were obtained. Thus, the synthesized fluorescence sensor is a promising platform for IMB sensing in various applications.
Collapse
Affiliation(s)
- Heba M Hashem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Eslam A Ghaith
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Amira Eladl
- Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samira M Abozeid
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - A B Abdallah
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Sarkar K, Kumar P, Mule A, Maji B. Divergent Synthesis of Pyrazoles via Manganese Pincer Complex Catalyzed Acceptorless Dehydrogenative Coupling Reactions. Chemistry 2024; 30:e202401105. [PMID: 38655822 DOI: 10.1002/chem.202401105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
This report detailed the synthesis of multi-substituted pyrazoles through the acceptorless dehydrogenative coupling (ADC) reaction catalyzed by a well-defined manganese(I)-pincer complex. Symmetrically substituted pyrazoles were synthesized by reacting 1,3-diols with hydrazines. Unsymmetrically substituted pyrazoles were selectively made via the ADC of primary alcohols with methyl hydrazones. Water and hydrogen are liberated as the green byproducts. The endurance of these methodologies has been presented by producing 30 substrates with varied functionalities. Model reactions were scaled up to demonstrate practicability. The reaction rate and order were measured to transparent the involvement of the reagents during catalysis. Control experiments elucidated the plausible reaction mechanisms.
Collapse
Affiliation(s)
- Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Arjun Mule
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
3
|
Ghaith EA, Zoorob HH, Hamama WS. Synthesis, Antimicrobial Evaluation, DFT, and Molecular Docking Studies of Pyrano [4,3-b] Pyranone and Pyrano[2,3-b]Pyridinone Systems. Chem Biodivers 2024; 21:e202400243. [PMID: 38462494 DOI: 10.1002/cbdv.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/12/2024]
Abstract
Dehydroacetic acid (DHA) was utilized as a fundamental precursor in the synthesis of novel pyrano [4,3-b] pyran and pyrano [2,3-b] pyridine systems. Whereas, a new series of fused polyheteronuclear systems was achieved through the reaction of DHA with active methylene compounds such as malononitrile and pyrazolone. Whereas, the treatment of DHA 1 with cyclic ketones involving cyclohexanone and cyclododecanone afforded annulated tricyclic system 6 and spiro hybrid molecule 7. Also, the reaction of DHA 1 with cyanoacetamide derivatives 8 and 11 yielded their corresponding novel pyrano [2,3-b] pyridine-6-carbonitrile frameworks 9 and 12, respectively. Also, in silico predictive theoretical molecular docking studies for bioactive synthesized scaffolds against both HER2 and 6BBP displayed an optimistic result for compounds 2 b, 5, 9, and 12 highlighting their expediency as up-and-coming candidates for future preclinical trials. Additionally, all compounds were assessed as antibacterial agents against various types of four candidates of bacteria in the presence of ampicillin as a reference. Notably, compounds 6, 7, and 12 showed promising antibacterial potential against Bacillus subtilis with activity indexes (69.6, 91.3, and 82.6 %), respectively.
Collapse
Affiliation(s)
- Eslam A Ghaith
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Hanafi H Zoorob
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa S Hamama
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Grover A, Kumar A, Tittal RK, Lal K. Dehydroacetic acid a privileged medicinal scaffold: A concise review. Arch Pharm (Weinheim) 2024; 357:e2300512. [PMID: 37972261 DOI: 10.1002/ardp.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
From the last decade, research on dehydroacetic acid (DHA) and its derivatives has increased immensely due to its significant role in various fields, including medicine, cosmetics, food industry, and so on. In the medicinal area, DHA plays an essential role in developing novel action-based drugs, which are helpful for treating various diseases. Besides its plethora of biological applications, its chelating ability offers the easiest synthetic route for synthesizing more active metal complexes. DHA derivatives along with their metal complexes show a number of biological activities and also exhibit various interactions with multiple biological targets. This article summarizes recent medicinal applications (2000-onwards) of DHA-based compounds and their analogs, along with their structure-activity relationship (SAR) analysis. Their interactions with different target enzymes are also discussed. This information derived from SAR analysis would be helpful for medicinal chemists working on the development of drugs based on heterocyclic frameworks, particularly those based on the DHA scaffold.
Collapse
Affiliation(s)
- Anshul Grover
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Aman Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
5
|
Ghaith EA, Ali HA, Ismail MA, Fouda AEAS, Abd El Salam M. Synthesis of inventive biphenyl and azabiphenyl derivatives as potential insecticidal agents against the cotton leafworm, Spodoptera littoralis. BMC Chem 2023; 17:144. [PMID: 37891573 PMCID: PMC10612163 DOI: 10.1186/s13065-023-01050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of pest resistance of Spodoptera littoralis (order; Lepidoptera, family; Noctuidae) towards the large scale of different classes of insecticides necessitates the development of some new poly-functionalized biphenyl and azabiphenyl with highly anticipated insecticidal bioresponse. Four new biphenyl carboxamidines 4a-d and four aza-analogue picolinamidine derivatives 8a-d were designed and prepared via the treatment of their corresponding carbonitriles with lithium-bis trimethylsilylamide [LiN(TMS)2], followed by hydrolysis with hydrogen chloride. Furthermore, these compounds were elucidated by spectral data, and their toxicity and insecticidal activity were screened against Spodoptera littoralis. Whereby, toxicological and biochemical aspects of the inventively synthesized biphenyl and azabiphenyl derivatives against the cotton leafworm, Spodoptera littoralis were inspected. As regards the indomitable LC50 and LC90 values, biphenyl and aza-analogues 8d, 8a, 4b, and 8b, revealed the furthermost forceful toxic effects with LC50 values of 113.860, 146.265, 216.624, and 289.879 ppm, respectively. Whereby, their LC90 values are 1235.108, 1679.044, 2656.296, and 3381.256 ppm, respectively, and toxicity index being 22.31%, 17.36%, 11.72%, and 8.76%, respectively, comparing with the already recommended, methomyl insecticide, lannate 90% SP (LC50, 25.396 and LC90, 57.860 and toxicity index, 100%). Additionally, electrochemical parameters via DFT studies were carried out for demonstrating and elucidation of structure-activity relationship (SAR) according to highly motived compounds, descriptors, and the in vivo insecticidal activities.
Collapse
Affiliation(s)
- Eslam A Ghaith
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Hajar A Ali
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed A Ismail
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Abd El-Aziz S Fouda
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - M Abd El Salam
- Plant Protection Research Institute, ARC, Dokki, Giza, Egypt
| |
Collapse
|
6
|
El-Reash YGA, Ghaith EA, El-Awady O, Algethami FK, Lin H, Abdelrahman EA, Awad FS. Highly fluorescent hydroxyl groups functionalized graphitic carbon nitride for ultrasensitive and selective determination of mercury ions in water and fish samples. J Anal Sci Technol 2023. [DOI: 10.1186/s40543-023-00379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
AbstractHeavy metal ion pollution is always a serious problem worldwide. Therefore, monitoring heavy metal ions in environmental water is a crucial and difficult step to ensure the safety of people and the environment. A mercury ion (Hg2+) fluorescence probe with excellent sensitivity and selectivity is described here. The functionalized graphitic carbon nitride nanosheets (T/G-C3N4) fluorescence probe was fabricated using melamine as a precursor by the pyrolysis technique, followed by a rapid KOH heat treatment method for 2 min. The chemical structure and morphology of the T/G-C3N4 probe were characterized using multiple analytical techniques including UV–Vis, SEM, XPS, XRD, and fluorometer spectroscopy. Geometry optimization of T/G-C3N4 as a modified probe was performed to assess its stability and interaction ability with Hg(II) via using the density function approach. The T/G-C3N4 probe showed a linear response based on quenching over the range 0–1.25 × 103 nM Hg(II); the detection limit was 27 nM. The remarkable sensitivity of T/G-C3N4 towards the Hg2+ ions was explained by the intense coordination and fast chelation kinetics of Hg2+ with the NH2, CN, C=N, and OH groups of T/G-C3N4 nanoprobe. The T/G-C3N4 probe demonstrates exceptional selectivity for Hg2+ ions among other metal ions including (Na+, Ag+, Mg2+, Fe2+, Fe3+, Co2+, Ni2+, Cd2+, K+, Ca2+, Cu2+, Pb2+, Mn2+ and Hg2+) and over a broad pH range (6–10), together with remarkable long-term fluorescence stability in water (> 30 days) and minimal toxicity. T/G-C3N4 was used to detect and quantify Hg2+ ions in tuna and mackerel fish and the results compared to ICP-AES. The results obtained offer a new simple and green technique for the design of multifunctional fluorescent probe appropriate for environmental applications.
Graphical Abstract
Collapse
|
7
|
Electrochemical sensing of sodium dehydroacetate in preserved strawberries based onin situ pyrrole electropolymerization at modified carbon paste electrodes. Food Chem 2023; 401:134058. [DOI: 10.1016/j.foodchem.2022.134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
|
8
|
Ghazy NM, Ghaith EA, Abou El-Reash YG, Zaky RR, Abou El-Maaty WM, Awad FS. Enhanced performance of hydroxyl and cyano group functionalized graphitic carbon nitride for efficient removal of crystal violet and methylene blue from wastewater. RSC Adv 2022; 12:35587-35597. [PMID: 36540397 PMCID: PMC9743788 DOI: 10.1039/d2ra07032d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/08/2022] [Indexed: 10/27/2023] Open
Abstract
This work reports the synthesis of an innovative multifunctional carbon nitride based adsorbent and its successful application for the removal of crystal violet (CV) and methylene blue (MB) from wastewater. The functionalized graphitic carbon nitride (f/g-CN) adsorbent was produced by the pyrolysis of melamine followed by thermal alkali treatment to introduce OH, NH x , and CN groups onto the graphitic carbon nitride (g-CN) surface. Experimental data obtained from batch tests revealed that the maximum adsorption capacities of g-CN and f/g-CN were found to be 28.9 and 239.0 mg g-1 for MB, and 163.0 and 532.0 mg g-1 for CV, respectively, at pH 8, 25 °C and after 90 min. This increase in adsorption capacity of f/g-CN can be explained by the presence of multiple functional groups in its structure. f/g-CN showed 100% removal for MB and CV with concentrations lower than 100 ppm and the equilibrium time required for the 100% removal of 500 ppb dye is 60 seconds. Additionally, the experimental data fitted well with the Langmuir isotherm model (R 2 = 0.992) and pseudo second order kinetic model (R 2 = 0.999) suggesting that the mechanism of adsorption is based on π-π stacking and electrostatic interactions between the NH x and OH groups of f/g-CN and dye molecules with monolayer formation. Moreover, a reusability test showed that the adsorption capacity remained at around 90% after 7 cycles. This work highlights the merits of the prepared adsorbent f/g-CN which is an eco-friendly, stable, efficient, and reusable adsorbent for removing cationic dyes from wastewater.
Collapse
Affiliation(s)
- Nada M Ghazy
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Eslam A Ghaith
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Y G Abou El-Reash
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
- Chemistry Department, Faculty of Science, Imam Mohammad Ibn Saud Islamic University P.O. Box, 90950 Riyadh 11623 Saudi Arabia
| | - Rania R Zaky
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Weam M Abou El-Maaty
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| | - Fathi S Awad
- Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
9
|
Abdallah AB, El-Shafei AA, Khalifa ME. Selective and Sensitive Electrochemical Sensor Based on Molecular Imprinting Strategy for Recognition and Quantification of Sofosbuvir in Real Samples. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05779-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Hamama WS, Ghaith EA, Ibrahim ME, Sawamura M, Zoorob HH. Synthesis of 4‐Hydroxy‐2‐pyridinone Derivatives and Evaluation of Their Antioxidant/Anticancer Activities. ChemistrySelect 2021. [DOI: 10.1002/slct.202004682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wafaa S. Hamama
- Department of Chemistry Faculty of Science Mansoura University Mansoura, 35516 Egypt
| | - Eslam A. Ghaith
- Department of Chemistry Faculty of Science Mansoura University Mansoura, 35516 Egypt
| | - Mona E. Ibrahim
- Department of Chemistry Faculty of Science Mansoura University Mansoura, 35516 Egypt
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Sapporo 001-0021 Japan
| | - Hanafi H. Zoorob
- Department of Chemistry Faculty of Science Mansoura University Mansoura, 35516 Egypt
| |
Collapse
|