1
|
Bhuyan M, Sharma S, Dutta NB, Baishya G. tert-Butylhydroperoxide mediated radical cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2023; 21:9255-9269. [PMID: 37969100 DOI: 10.1039/d3ob01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A novel sustainable methodology based on one-pot cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s involving a three-component radical cascade pathway has been achieved. Here, tert-butylhydroperoxide (TBHP) acts as an efficient oxidant, and it smoothly drives the reaction, producing the three-component products in very good to excellent yields. This cascade reaction eliminates the use of any base, additive, metal and hazardous cyanating agent. Additionally, this protocol exclusively delivers a stereospecific product in the case of arylalkynes. The involvement of radicals is evidenced through various radical trapping experiments.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | | | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
2
|
Peng P, Yang R, Xu B. Tunable Reduction of Benzyl
α
,
α
‐Difluorotriflones: Synthesis of Difluoroarenes and Sodium Aryldifluoromethyl Sufinates and their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology, Address Hangzhou 310014 China
| | - Ren‐Yin Yang
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| |
Collapse
|
3
|
Dong L, Wang X, Nie Y, Yu S, Li H, Zhao Q, Fan Z, Wang Y, Tan X, Yu Z. Regioselective Perfluoroalkylation of 4‐Quinolones Using Sodium Perfluoroalkyl Sulfinates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Li Dong
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Xiaoqing Wang
- College of Science Hebei Agriculture University Baoding Hebei 071000 China
| | - Yudi Nie
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Shuo Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Haotong Li
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Qian Zhao
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zixuan Fan
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| | - Yuqian Wang
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Xiaoting Tan
- College of Modern Science and Technology Hebei Agriculture University Baoding Hebei 071000 China
| | - Zhengsen Yu
- College of Life Science Hebei Agriculture University The Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Micro-organism Baoding Hebei 071000 China
| |
Collapse
|
4
|
Wang M, Zhang Z, Xiong C, Sun P, Zhou C. Microwave‐Accelerated Cross‐Dehydrogenative Coupling of Quinoxalin‐2(1
H
)‐ones with Alkanes under Transition‐Metal‐Free Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Wang
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Zhongyi Zhang
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Chunxia Xiong
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| | - Peipei Sun
- Nanjing Normal University Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing 210023 China
| | - Chao Zhou
- Huaibei Normal University Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education Huaibei Anhui 235000 China
| |
Collapse
|
5
|
Shen GB, Yu HY, Xu Z, Cao W, Liu J, Xie L, Yan M. Theoretical study for evaluating and discovering organic hydride compounds as novel trifluoromethylation reagents. Org Biomol Chem 2022; 20:2831-2842. [PMID: 35294516 DOI: 10.1039/d2ob00056c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trifluoromethylation reaction is one of the significant and practical organic chemical reactions, and the design and discovery of novel trifluoromethylation reagents have been attracting more and more attention. Trifluoromethyl-substituted organic hydride compounds (XH) have the potential to be novel trifluoromethylation reagents in organic synthesis due to the favorable tendency of XH˙+ releasing ˙CF3 to form stable aromatic structures in terms of thermodynamics. The key elementary step of the trifluoromethylation is the radical cation (XH˙+) generation by catalysis or single-electron activation releasing ˙CF3 to form a stable aromatic structure, which also provides the thermodynamic driving force of the chemical process. In this work, 47 new trifluoromethylation reagent candidates of XHs were designed and calculated for the Gibbs free energy and activation free energy [ΔG‡RD(XH˙+)] of XH˙+ releasing ˙CF3 using the density functional theory (DFT) method, in order to quantitatively measure the reactivity of XHs as trifluoromethylation reagents, and to establish the molecular library as well as reactivity database of novel trifluoromethylation reagents for synthetic chemists. According to the and ΔG‡RD(XH˙+) values, all the XHs can be reasonably divided into 3 classes, including class 1 (excellent trifluoromethylation reagents), class 2 (potential trifluoromethylation reagents) and class 3 (not trifluoromethylation reagents). To our delight, 15 XHs with a 1,4-dihydropyridine structure and 3 XHs with a 3,4-dihydropyrimidin-2-one structure are identified to be novel excellent and potential trifluoromethylation reagents, respectively, according to their reactivity data. The relationship between the structural features, including methylation, heteroatom, substituents, conjugated structure and so on, and the reactivity of XHs as trifluoromethylation reagents are also discussed in this work. The computation results indicate that trifluoromethyl-substituted 1,4-dihydropyridine compounds and 3,4-dihydropyrimidin-2-one analogues could be possible trifluoromethylation reagents in organic synthesis. This work may provide the theoretical basis and references for discovering organic hydride compounds as novel reagents for trifluoromethylation or other alkylation reactions.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Hao-Yun Yu
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Zhihao Xu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| | - Weilong Cao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| | - Jie Liu
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, 276800, P. R. China.
| |
Collapse
|
6
|
Wang H, Li S, Cui Y, Liu M, Bu X, Tian H, Yang X. A covalent organic framework-catalyzed visible-light-induced three-component cascade synthesis of trifluoroalkyl and trifluoroalkenyl quinoxalin-2(1 H)-one derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj04430g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A COF-catalyzed visible-light-induced three-component synthesis of trifluoroalkyl and trifluoroalkenyl quinoxalin-2(1H)-one derivatives features robust substrate adaptability, good sustainability, and Z-selectivity.
Collapse
Affiliation(s)
- Hesheng Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Siyu Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Yue Cui
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Minqiang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
Guo X, Wang Y, Zhao Z, Wang Q, Zuo J, Wang L. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1 H)-ones and the Performance Evaluation via Electro-descriptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Bhuyan M, Sharma S, Baishya G. Metal-free three-component cyanoalkylation of quinoxalin-2(1H)-ones with vinylarenes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2022; 20:1462-1474. [DOI: 10.1039/d1ob02143e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A K2S2O8-mediated C3 cyanoalkylation of quinoxalin-2(1H)-ones via a three-component radical cascade reaction with vinylarenes and azobis(alkylcarbonitrile)s has been achieved.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
9
|
Baishya G, Dutta NB. Recent Advances in Direct C−H Trifluoromethylation of N‐Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gakul Baishya
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nibedita B. Dutta
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| |
Collapse
|
10
|
Li H, Peng X, Nie L, Zhou L, Yang M, Li F, Hu J, Yao Z, Liu L. Graphene oxide-catalyzed trifluoromethylation of alkynes with quinoxalinones and Langlois' reagent. RSC Adv 2021; 11:38667-38673. [PMID: 35493205 PMCID: PMC9044184 DOI: 10.1039/d1ra07014b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The direct C–H trifluoromethylation of alkynes and quinoxalinones has been achieved using a graphene oxide/Langlois' reagent system. This multi-component tandem reaction using graphene oxide as the catalyst and Langlois' reagent as the robust CF3 radical source results in the formation of olefinic C–CF3 to access a series of 3-trifluoroalkylated quinoxalin-2(1H)-ones. The direct C–H trifluoromethylation of alkynes and quinoxalinones using a graphene oxide/Langlois' reagent system.![]()
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liang Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Lin Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Ming Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Fan Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Jian Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Zhiyang Yao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| |
Collapse
|
11
|
Li M, Li G, Dai C, Zhou W, Zhan W, Gao M, Rong Y, Tan Z, Deng W. Visible-light-promoted direct C3-trifluoromethylation and perfluoroalkylation of imidazopyridines. Org Biomol Chem 2021; 19:8301-8306. [PMID: 34545902 DOI: 10.1039/d1ob01417j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient method for direct trifluoromethylation and perfluoroalkylation at C3 of imidazopyridines through visible light-promoted C-H bond functionalization was developed. Under the irradiation of a blue LED, a series of C3-perfluoroalkyl-substituted imidazopyridines were synthesized from the corresponding imidazopyridines and perfluoroalkyl iodides in moderate to good yields at room temperature. It should be mentioned that this reaction proceeded in the absence of any transition-metal catalyst, oxidant and photocatalyst.
Collapse
Affiliation(s)
- Meichen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Gaolin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Chenxun Dai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wenjun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wenqiang Zhan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Muyang Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Yuan Rong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
12
|
Liu Z, Zhang B, Yang X, Wang N, Wang J. Aminomethylation of imidazopyridines with dichloromethane: A general strategy to construct 3-aminomethlylated imidazoheterocycles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Sharma S, Sarma B, Baishya G. Direct synthesis of 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone containing chroman-4-ones via a silver catalyzed radical cascade cyclization reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03437e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel AgNO3/K2S2O8 catalyzed radical cascade cyclization reaction of 2-(allyloxy)arylaldehydes with 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone produces two new series of chroman-2-ones.
Collapse
Affiliation(s)
- Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
14
|
Kiran, Rani P, Chahal S, Sindhu J, Kumar S, Varma RS, Singh R. Transition metal-free C-3 functionalization of quinoxalin-2(1 H)-ones: recent advances and sanguine future. NEW J CHEM 2021. [DOI: 10.1039/d1nj03445f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A gradual shift from metal-catalyzed to metal-free methods is occurring, as the latter are more environmentally benign. This review discusses sustainable protocols for the construction of C–C, C–N, C–P, C–S, and C–O bonds via C–H functionalization of quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sandhya Chahal
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Sudhir Kumar
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Rajvir Singh
- Department of Chemistry, COBS&H, CCSHAU, Hisar, 125004, India
| |
Collapse
|