1
|
Nkoh JN, Oderinde O, Etafo NO, Kifle GA, Okeke ES, Ejeromedoghene O, Mgbechidinma CL, Oke EA, Raheem SA, Bakare OC, Ogunlaja OO, Sindiku O, Oladeji OS. Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163469. [PMID: 37061067 DOI: 10.1016/j.scitotenv.2023.163469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila, Mexico
| | - Ghebretensae Aron Kifle
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, Mai Nefhi College of Science, National Higher Education and Research Institute, Asmara 12676, Eritrea
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Emmanuel A Oke
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Saheed Abiola Raheem
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumuyiwa O Ogunlaja
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Omotayo Sindiku
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olatunde Sunday Oladeji
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| |
Collapse
|
2
|
Ma R, Xue Y, Ma Q, Chen Y, Yuan S, Fan J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224045. [PMID: 36432330 PMCID: PMC9694191 DOI: 10.3390/nano12224045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics have been a primary environmental concern due to their widespread dispersion, harmful bioaccumulation, and resistance to mineralization. Unfortunately, typical processes in wastewater treatment plants are insufficient for complete antibiotic removal, and their derivatives in effluent can pose a threat to human health and aquatic communities. Adsorption and photocatalysis are proven to be the most commonly used and promising tertiary treatment methods. Carbon-based materials, especially those based on graphene, carbon nanotube, biochar, and hierarchical porous carbon, have attracted much attention in antibiotic removal as green adsorbents and photocatalysts because of their availability, unique pore structures, and superior physicochemical properties. This review provides an overview of the characteristics of the four most commonly used carbonaceous materials and their applications in antibiotic removal via adsorption and photodegradation, and the preparation of carbonaceous materials and remediation properties regarding target contaminants are clarified. Meanwhile, the fundamental adsorption and photodegradation mechanisms and influencing factors are summarized. Finally, existing problems and future research needs are put forward. This work is expected to inspire subsequent research in carbon-based adsorbent and photocatalyst design, particularly for antibiotics removal.
Collapse
|
3
|
Hacıosmanoğlu GG, Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115397. [PMID: 35660825 DOI: 10.1016/j.jenvman.2022.115397] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
Increased antibiotic use worldwide has become a major concern because of their health and environmental impacts. Since most antibiotic residues can hardly be removed from wastewater using conventional treatments, alternative methods receive great attention. Adsorption is one of the most efficient and cost-effective treatment methods for antibiotics. Among the adsorbents, clay minerals have garnered increasing attention due to their unique properties including availability, high specific surface area, low cost, cation exchange capacity, and good removal efficiency. This paper reviews the recent progress made in the use of natural and modified clay minerals for the removal of antibiotics from water. First, the sources, occurrence, removal and health effects of the antibiotics commonly encountered in water bodies are described. Antibiotic concentration levels and average removal efficiencies measured in conventional activated sludge treatment systems worldwide are also provided to better address the problem. Second, the review explores the characteristics of clay minerals as adsorbent of antibiotics and the factors affecting the adsorption. The review identifies and discusses the future trends and strategies used to increase the adsorption capacity of clay minerals by modification and combination techniques (intercalation of novel functional groups such as organocations, biopolymers and metal pillared-clay minerals, combination with biochar or thermal activation). The quantitative comparisons of clay minerals' ability for antibiotic removal are given. Some natural clay minerals have good removal potential for antibiotics, with maximum adsorption capacities over 100 mg/g. For most other adsorbents, surface modifications and combination techniques resulted in improved adsorption properties (including higher surface area, enhanced adsorption capacity, increased stability and mechanical strength). Finally, the application of these adsorbents at pilot scale, using real wastewater samples, their reuse, economic analysis and life cycle assessment are other issues that have been considered.
Collapse
Affiliation(s)
- Gül Gülenay Hacıosmanoğlu
- Environmental Engineering Department, Faculty of Engineering, Marmara University, Uyanık Cd. No:6, 34840, Istanbul, Turkey.
| | - Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011, Seville, Spain
| |
Collapse
|
4
|
Afshari M, Varma RS, Saghanezhad SJ. Catalytic Applications of Heteropoly acid-Supported Nanomaterials in Synthetic Transformations and Environmental Remediation. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | | |
Collapse
|