Gupta U, Kumar N, Lata A, Singh P, Arun RK. Bio-inspired self-pumping microfluidic device for cleaning of urea using reduced graphene oxide (rGO) modified polymeric nanohybrid membrane.
Int J Biol Macromol 2023;
241:124614. [PMID:
37119905 DOI:
10.1016/j.ijbiomac.2023.124614]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
In vitro technology facilitates the replication of in vivo tissues more accurately than conventional cell-based artificial organs, enabling researchers to mimic both the structural and functional characteristics of natural systems. Here, we demonstrate a novel spiral-shaped self-pumping microfluidic device for the cleaning of urea by incorporating reduced graphene oxide (rGO) modified a Polyethersulfone (PES) nanohybrid membrane for efficient filtration capacity. The spiral-shaped microfluidic chip is a two-layer configuration of polymethyl methacrylate (PMMA) integrated with the modified filtration membrane. In essence, the device replicates the main features of the kidney (Glomerulus), i.e., a nano-porous membrane modified with reduced graphene oxide to separate the sample fluid from the upper layer and collect the biomolecule-free fluid through the bottom of the device. We have achieved a cleaning efficiency of 97.94 ± 0.6 % using this spiral shaped microfluidic system. The spiral-shaped microfluidic device integrated with nanohybrid membrane has potential for organ-on-a-chips applications.
Collapse