1
|
Rao KT, Gangwar R, Bhagavathi A, Khatun S, Sahu PK, Putta CL, Rengan AK, Subrahmanyam C, Garlapati SK, Krishna Vanjari SR. Silk-polyurethane composite based flexible electrochemical biosensing platform for pathogen detection. Biosens Bioelectron 2025; 271:117024. [PMID: 39689581 DOI: 10.1016/j.bios.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility. More importantly, an electrochemical biosensing platform is developed by creating a three-electrode system using a screen-printing technique. The solvents in the Ink had little impact on the film. As a proof of concept, the detection of E. coli, a highly infectious pathogen, was demonstrated using screen-printed electrodes (SPEs) modified with gold nanoparticles. This method effectively detected E. coli across a wide range of concentrations, with a detection limit of 0.12 CFU/mL. The entire surface functionalization and detection process did not impact the Silk-PU substrate. Even after rigorous bending tests, the results were consistent, demonstrating the robustness and flexibility of the Silk-PU film. The platform demonstrated is scalable and amenable for multi-pathogen detection as it not only can integrate several working electrodes, each catering to detection of a particular pathogen, but also serve as a platform for lab-on-chip devices wherein PDMS-based microfluidics can be seamlessly integrated along with the proposed platform.
Collapse
Affiliation(s)
- Karri Trinadha Rao
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India, 502284.
| | - Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India, 502284.
| | - Aditya Bhagavathi
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India, 502284.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India, 502284.
| | - Pravat Kumar Sahu
- Department of Chemistry, Indian Institute of Technology, Hyderabad, India, 502284.
| | - Chandra Lekha Putta
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India, 502284.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India, 502284.
| | | | - Suresh Kumar Garlapati
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, India, 502284.
| | | |
Collapse
|
2
|
Gangwar R, Ray D, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Toll-like receptor-immobilized carbon paste electrodes with plasma functionalized amine termination: Towards real-time electrochemical based triaging of gram-negative bacteria. Biosens Bioelectron 2023; 241:115674. [PMID: 37717423 DOI: 10.1016/j.bios.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Chronic wounds caused due to bacterial biofilms are detrimental to a patient, and an immediate diagnosis of these bacteria can aid in an effective treatment, which is still an unmet clinical need. An instant and accurate identification of bacterial type could be made by utilizing the Toll-Like Receptors (TLRs) combined with Myeloid Differentiation factor 2 (MD-2). Given this, we have developed an electrochemical sensing platform to identify the gram-negative (gram-ve) bacteria using TLR4/MD-2 complex. The nonthermal plasma (NTP) technique was utilized to functionalize amine groups onto the carbon surface to fabricate cost-effective carbon paste working electrodes (CPEs). The proposed electrochemical sensor platform with a specially engineered electrochemical cell (E-Cell) identified the Escherichia coli (E. coli) in a wide linear range of 1.5×10° - 1.5×106 C.F.U./mL, accounting for a very low detection limit of 0.087 C.F.U./mL. The novel and cost-effective sensor platform identified gram-ve bacteria predominantly in a mixture of gram positive (gram+ve) bacteria and fungi. Further, towards real-time detection of bacteria and point-of-care (PoC) applications, the effect of the pond water matrix was studied, which was minimal, and the sensor could identify E. coli concentrations selectively, showing the potential application of the proposed platform towards real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department of Electrical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | - Debjyoti Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, 502284, India; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region of China.
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502284, India.
| | | |
Collapse
|
3
|
Zalke JB, Narkhede NP, Pandhurnekar CP, Rotake DR, Singh SG. Non-enzymatic glucose detection with screen-printed chemiresistive sensor using green synthesised silver nanoparticle and multi-walled carbon nanotubes-zinc oxide nanofibers. NANOTECHNOLOGY 2023; 35:065502. [PMID: 37918017 DOI: 10.1088/1361-6528/ad090c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Non-enzymatic screen-printed chemiresistive interdigitated electrodes (SPCIE) were designed and fabricated using a low-cost screen-printing method for detection of the glucose. The interdigitated electrodes (IDE) pattern was printed using conductive graphene ink on the glossy surface of the photo paper. The proposed glossy photo paper-based SPCIE are functionalized with multi-walled carbon nanotubes-zinc oxide (MWCNTs-ZnO) nanofibers to create the chemiresistive matrix. Further, to bind these nanofibers with the graphene electrode surface, we have used the green synthesized silver nanoparticles (AgNPs) with banana flower stem fluid (BFSF) as a binder solution. AgNPs with BFSF form the conductive porous natural binder layer (CPNBL). It does not allow to increase the resistivity of the deposited material on graphene electrodes and also keeps the nanofibers intact with paper-based SPCIE. The synthesized material of MWCNT-ZnO nanofibers and green synthesized AgNPs with BFSF as a binder were characterized by Ultraviolet-visible spectroscopy (UV-vis), scanning electron microscope (SEM), x-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The amperometric measurements were performed on the proposed SPCIE sensor to detect the glucose sample directly. The innovative paper-based SPCIE glucose sensor exhibits a linear corelation between current measurements and glucose concentration in the range between 45.22μm and 20 mm, with a regression coefficient (R2) of 0.9902 and a lower limit of detection (LoD) of 45.22μm (n= 5). The sensitivity of the developed SPCIE sensor was 2178.57μAmM-1cm-2, and the sensor's response time determined was approximately equal to 18 s. The proposed sensor was also tested for real blood serum sample, and relative standard deviation (RSD) was found equal to 2.95%.
Collapse
Affiliation(s)
- Jitendra B Zalke
- Department of Electronics Design Technology, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - N P Narkhede
- Department of Electronics Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - C P Pandhurnekar
- Department of Chemistry, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - Dinesh R Rotake
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
4
|
Shankar S, Gadi R, Bajar S, Yadav N, Mandal TK, Sharma SK. Insights into seasonal-variability of SVOCs, morpho-elemental and spectral characteristics of PM2.5 collected at a dense industrial site: Faridabad, Haryana, India. CHEMOSPHERE 2023; 323:138204. [PMID: 36828107 DOI: 10.1016/j.chemosphere.2023.138204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The development-oriented anthropogenic activities have led to intensive increase in emission of various organic pollutants, which contribute considerably to human health risk. In the present study, chemical, physical and spectral characterisation of fine particulate matter (PM2.5), collected at Faridabad city, in northern India, were examined. Seasonal variation of organic compounds [n-alkanes, polyaromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs)], and potential health risk of Polyaromatic hydrocarbons (PAHs) exposure using toxic equivalency potential (TEQ) approach had been assessed. These showed seasonal average values ranging from 156.4 ± 57.0 ng/m3 to 217.6 ± 72.9 ng/m3, 98.0 ± 21.4 ng/m3 to 177.8 ± 72.8 ng/m3, and 30.9 ± 11.9 ng/m3 to 82.5 ± 29.2 ng/m3, respectively, with the highest value for winter. It is noteworthy that unlike, n-alkanes and PAEs, PAHs were least during spring. The high molecular weight PAHs (BaP, BkF, DahA and IcdP) were found to exhibit higher TEQ values (ranging from 0.7 to 9.7) despite of their lower concentrations. The PAH diagnostic ratio, carbon preference index and total index revealed the enhanced impact of biogenic sources of emissions in comparison to diesel emission sources during winter.
Collapse
Affiliation(s)
- Shobhna Shankar
- Indira Gandhi Delhi Technical University for Women, New Delhi, 110006, India
| | - Ranu Gadi
- Indira Gandhi Delhi Technical University for Women, New Delhi, 110006, India.
| | - Somvir Bajar
- J.C. Bose University of Science and Technology, YMCA, Haryana, 121006, India
| | - Neha Yadav
- J.C. Bose University of Science and Technology, YMCA, Haryana, 121006, India
| | - Tuhin K Mandal
- Council of Scientific and Industrial Research-National Physical Laboratory of India, New Delhi, 110012, India
| | - Sudhir K Sharma
- Council of Scientific and Industrial Research-National Physical Laboratory of India, New Delhi, 110012, India
| |
Collapse
|
5
|
Li L, Hai W, Chen Z, Liu Y, Liu Y, Liu Z, Liu J. Phenylboronic acid conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) coated Ag dendrite for electrochemical non-enzymatic glucose sensing. NEW J CHEM 2023. [DOI: 10.1039/d2nj05148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The fern leaf-like surface topography of poly(EDOT-PBA)/Ag/Cu/GCE increases the specific surface area of the sensor, thereby enhancing the glucose sensing performance.
Collapse
Affiliation(s)
- Lijuan Li
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhiran Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Chemical Engineering, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
6
|
Randviir EP, Banks CE. A review of electrochemical impedance spectroscopy for bioanalytical sensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4602-4624. [PMID: 36342043 DOI: 10.1039/d2ay00970f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is a powerful technique for both quantitative and qualitative analysis. This review uses a systematic approach to examine how electrodes are tailored for use in EIS-based applications, describing the chemistries involved in sensor design, and discusses trends in the use of bio-based and non-bio-based electrodes. The review finds that immunosensors are the most prevalent sensor strategy that employs EIS as a quantification technique for target species. The review also finds that bio-based electrodes, though capable of detecting small molecules, are most applicable for the detection of complex molecules. Non-bio-based sensors are more often employed for simpler molecules and less often have applications for complex systems. We surmise that EIS has advanced in terms of electrode designs since our last review on the subject, although there are still inconsistencies in terms of equivalent circuit modelling for some sensor types. Removal of ambiguity from equivalent circuit models may help advance EIS as a choice detection method, allowing for lower limits of detection than traditional electrochemical methods such as voltammetry or amperometry.
Collapse
Affiliation(s)
- Edward P Randviir
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, Lancs, UK.
| | - Craig E Banks
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, Lancs, UK.
| |
Collapse
|
7
|
Gangwar R, Rao KT, Khatun S, Rengan AK, Subrahmanyam C, Krishna Vanjari SR. Label-free miniaturized electrochemical nanobiosensor triaging platform for swift identification of the bacterial type. Anal Chim Acta 2022; 1233:340482. [DOI: 10.1016/j.aca.2022.340482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 11/01/2022]
|
8
|
Gangwar R, Ray D, Rao KT, Khatun S, Subrahmanyam C, Rengan AK, Vanjari SRK. Plasma Functionalized Carbon Interfaces for Biosensor Application: Toward the Real-Time Detection of Escherichia coli O157: H7. ACS OMEGA 2022; 7:21025-21034. [PMID: 35755381 PMCID: PMC9219096 DOI: 10.1021/acsomega.2c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Nonthermal plasma, a nondestructive, fast, and highly reproducible surface functionalization technique, was used to introduce desired functional groups onto the surface of carbon powder. The primary benefit is that it is highly scalable, with a high throughput, making it easily adaptable to bulk production. The plasma functionalized carbon powder was later used to create highly specific and low-cost electrochemical biosensors. The functional groups on the carbon surface were confirmed using NH3-temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) analysis. In addition, for biosensing applications, a novel, cost-effective, robust, and scalable electrochemical sensor platform comprising in-house-fabricated carbon paste electrodes and a miniaturized E-cell was developed. Biotin-Streptavidin was chosen as a model ligand-analyte combination to demonstrate its applicability toward biosensor application, and then, the specific identification of the target Escherchia coli O157:H7 was accomplished using an anti-E. coli O157:H7 antibody-modified electrode. The proposed biosensing platform detected E. coli O157:H7 in a broad linear range of (1 × 10-1-1 × 106) CFU/mL, with a limit of detection (LOD) of 0.1 CFU/mL. In addition, the developed plasma functionalized carbon paste electrodes demonstrated high specificity for the target E. coli O157:H7 spiked in pond water, making them ideal for real-time bacterial detection.
Collapse
Affiliation(s)
- Rahul Gangwar
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Debjyoti Ray
- Department
of Chemistry, Indian Institute of Technology
Hyderabad, Hyderabad 502284, India
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, NT 00000, Hong Kong SAR, China
| | - Karri Trinadha Rao
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Sajmina Khatun
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | | | - Aravind Kumar Rengan
- Department
of Biomedical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| | - Siva Rama Krishna Vanjari
- Department
of Electrical Engineering, Indian Institute
of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|