1
|
Venkatesh R, Gurukkalot K, Rajendran V, Kandasamy J. Synthesis of N-benzyl pyridones from para-quinone methides ( p-QMs) at room temperature: evaluation of in vitro blood-stage antiplasmodial activity. Org Biomol Chem 2025; 23:383-388. [PMID: 39565349 DOI: 10.1039/d4ob01686f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We present a method for synthesizing N-benzyl pyridones from para-quinone methides (p-QMs) and 2- or 4-hydroxy pyridines in the presence of a base at room temperature. The reaction proceeds through 1,6-Michael addition reaction. Simple operation, good to excellent yields, broad substrate scope, and good functional group tolerance are the salient features of the developed methodology. The synthesized N-benzyl pyridones displayed significant in vitro blood-stage antiplasmodial activity at sub-micromolar concentration.
Collapse
Affiliation(s)
- Rapelly Venkatesh
- Department of chemistry, Pondicherry University, Puducherry-605014, India.
| | | | - Vinoth Rajendran
- Department of Microbiology, Pondicherry University, Puducherry-605014, India
| | | |
Collapse
|
2
|
Luo Q, Wang H, Zhou J, Wang S, Li J, Sun B. Co(III) or Ru(II)-Catalyzed Selective C-H Alkynylation of 2-Pyridones and Their Derivatives with Bromoalkynes. J Org Chem 2024; 89:18400-18405. [PMID: 39632847 DOI: 10.1021/acs.joc.4c02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We successfully reported selective C-H alkynylation of 2-pyridones with bromoalkynes under the catalysis of Co(III) or Ru(II). The alkynylation reaction used easily accessible bromoalkynes instead of high-valent iodine alkynes. There is a broad substrate scope of 2-pyridones with good yields. In addition, 2-pyridone can be used as a weakly directing group for C-H alkynylation of the proximal aryl C-H bond. This method offers an efficient approach for synthesizing diverse 2-pyridone derivatives, yielding alkynylated products up to 95% yield (>40 examples).
Collapse
Affiliation(s)
- Quanjian Luo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hanchi Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jierui Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jinheng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Yadav N, Kumar R, Sangwan S, Dhanda V, Duhan A, Sindhu J. Environment benign synthesis of 5-acyl-4-hydroxypyridin-2(1 H)-one derivatives as antioxidant and α-amylase inhibitors. Future Med Chem 2024; 16:2637-2646. [PMID: 39606936 DOI: 10.1080/17568919.2024.2432289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
AIM Oxidative stress, caused by postprandial activities, is a major global health issue causing chronic diseases like diabetes mellitus, cancer, and asthma. Therefore, it was envisaged to design and synthesize a series of substituted 4-hydroxypyridine-2(1 h)-ones in order to develop new molecules that can reduce oxidative stress and modulate α-amylase activity also. MATERIALS & METHODS An environmentally benign, solvent and catalyst free, natural product inspired synthesis of 4-hydroxypyridin-2(1 h)-one derivatives has been developed. The synthetic analogues were evaluated in vitro α-amylase activity and antioxidant potential. RESULTS Among all the synthesized compounds, 4a, 4c, and 4d displayed many folds higher antioxidants activity than the standard, BHT. The in vitro α-amylase inhibition was found to be moderate with IC50 values ranging from 5.48 to 9.31 mm as compared to the standard acarbose (IC50 = 0.65 mm). The most active compound against α-amylase 4c was further investigated for its binding affinity within the active site of the enzyme and the kinetics studies revealed probable uncompetitive mode of inhibition. CONCLUSION Compound 4a was found to be promising antioxidant and 4c as a good α-amylase inhibitor. These compounds could pave the way for development of new α-amylase inhibitors with antioxidant capabilities thereby effectively mitigating diabetes mellitus.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Ravi Kumar
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
- MAP Section, Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
- Center for Bio-Nanotechnology, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Sarita Sangwan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Vidhi Dhanda
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Anil Duhan
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| | - Jayant Sindhu
- Department of Chemistry, Chaudhary Charan Singh Haryana Agricultural University Hisar, Hisar, Haryana, India
| |
Collapse
|
4
|
Stanisavljević A, Aleksić J, Stojanović M, Baranac-Stojanović M. Solid-state synthesis of polyfunctionalized 2-pyridones and conjugated dienes. Org Biomol Chem 2024; 22:7218-7230. [PMID: 39163014 DOI: 10.1039/d4ob00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Functionalized 2-pyridones are important biologically active compounds, DNA base analogues and synthetic intermediates. Herein, we report a simple, green, solid-state synthesis of differently substituted 2-pyridones. It starts from commercially available amines and activated alkynes, uses silica gel (15%Cs2CO3/SiO2) as the solid phase and a reaction vial as the only equipment. If necessary, heating is performed in a laboratory oven. Since most reactions are completed within a few hours, no additional energy consumption is required. The syntheses do not require solvents and other reagents and are easily monitored by standard analytical techniques. The atom economy is high, since all atoms of reactants are present in the products and EtOH is the only by-product. The syntheses produce polyfunctionalized conjugated dienes as the only intermediates, which are also important building blocks.
Collapse
Affiliation(s)
- Anđela Stanisavljević
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| | - Jovana Aleksić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Milovan Stojanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia.
| | - Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| |
Collapse
|
5
|
Wu J, Wang W, Yang Y, Shah M, Peng J, Zhou L, Zhang G, Che Q, Li J, Zhu T, Li D. Phenylhydrazone Alkaloids from the Deep-Sea Cold Seep Derived Fungus Talaromyces amestolkiae HDN21-0307. JOURNAL OF NATURAL PRODUCTS 2024; 87:1407-1415. [PMID: 38662578 DOI: 10.1021/acs.jnatprod.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 μM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 μg/mL.
Collapse
Affiliation(s)
- Jiajin Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Wenxue Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yuhuan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mudassir Shah
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Luning Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jing Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, People's Republic of China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, People's Republic of China
| |
Collapse
|
6
|
Fox A, Ball LT. Development and Scale-Up of a New Sulfone-Based Bismacycle as a Universal Precursor for Bi(V)-Mediated Electrophilic Arylation. Org Process Res Dev 2024; 28:632-639. [PMID: 38384679 PMCID: PMC10877598 DOI: 10.1021/acs.oprd.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
The scope and practical utility of bismuth(V)-mediated electrophilic arylation have been greatly improved by the recent development of user-friendly protocols based on modular bismacycle reagents. Here, we report the scalable synthesis of a new bench-stable bismacycle bromide and demonstrate that it can be used as a "universal precursor" in electrophilic arylation. Relative to established syntheses of related bismacycles, the new protocol benefits from improved step- and vessel-economy, reduced production time, and the complete elimination of cryogenic temperatures and undesirable solvents (Et2O and CH2Cl2). The synthesis is complemented by a robust, chromatography-free purification procedure that was developed by using design of experiments. We show that this process is highly reproducible at the 100 mmol scale, with two independent experiments giving 61 and 62% yields of isolated material. We anticipate that this efficient method for the synthesis of a new bismacycle precursor will expedite both (a) wider uptake of existing bismuth-mediated arylation methods by the synthetic community and (b) ongoing efforts to develop new bismuth-mediated transformations.
Collapse
Affiliation(s)
- Andrew Fox
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Liam T. Ball
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
7
|
Ruffell K, Gallegos LC, Ling KB, Paton RS, Ball LT. Umpolung Synthesis of Pyridyl Ethers by Bi V -Mediated O-Arylation of Pyridones. Angew Chem Int Ed Engl 2022; 61:e202212873. [PMID: 36251336 PMCID: PMC10099949 DOI: 10.1002/anie.202212873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/07/2022]
Abstract
We report that O-selective arylation of 2- and 4-pyridones with arylboronic acids is affected by a modular, bismacycle-based system. The utility of this umpolung approach to pyridyl ethers, which is complementary to conventional methods based on SN Ar or cross-coupling, is demonstrated through the concise synthesis of Ki6783 and picolinafen, and the formal synthesis of cabozantib and golvatinib. Computational investigations reveal that arylation proceeds in a concerted fashion via a 5-membered transition state. The kinetically-controlled regioselectivity for O-arylation-which is reversed relative to previous BiV -mediated pyridone arylations-is attributed primarily to the geometric constraints imposed by the bismacyclic scaffold.
Collapse
Affiliation(s)
- Katie Ruffell
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Liliana C Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Kenneth B Ling
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Liam T Ball
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
8
|
Bera S, Sarkar S, Pal J, Samanta R. Rh(III)-Catalyzed Weakly Coordinating 2-Pyridone-Directed Oxidative Annulation Using Internal Alkynes: A Reversal in Selectivity. Org Lett 2022; 24:8470-8475. [DOI: 10.1021/acs.orglett.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanhita Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Juthi Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
9
|
Suzuki H, Ito Y, Matsuda T. Rhodium-Catalyzed C6-Selective Alkoxycarbonylation of Pyridones. CHEM LETT 2022. [DOI: 10.1246/cl.220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| | - Yuki Ito
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| |
Collapse
|