1
|
Buza A, Türkeş C, Arslan M, Demir Y, Dincer B, Nixha AR, Beydemir Ş. Novel benzenesulfonamides containing a dual triazole moiety with selective carbonic anhydrase inhibition and anticancer activity. RSC Med Chem 2024:d4md00617h. [PMID: 39493223 PMCID: PMC11525713 DOI: 10.1039/d4md00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
A series of sulfonamides incorporating a 1,2,3-triazolyloxime substituted 1,2,3-triazolyl moiety were conceptualized and synthesized as human carbonic anhydrase (hCA) inhibitors. The synthesized small structures, denoted 7a through 7o, exhibited moderate inhibitory effects against the tumor-associated isoforms hCA IX and hCA XII compared to the well-known hCA inhibitor acetazolamide. In contrast, these molecules demonstrated higher potency and a diverse range of selectivity against the cytosolic isoforms hCA I and hCA II. Notably, the 4-hydroxyphenyl derivative (compound 7dversus cytosolic isoforms), the 4-acetylphenyl derivative (compound 7o), and the phenyl derivative (compound 7a) emerged as the most potent and selective inhibitors in this series, with inhibition constants (K I) of 47.1, 35.9, 170.0, and 149.9 nM, respectively, against hCA I, II, IX, and XII. Further cytotoxicity assays of compounds 7a-o against cancer cell lines Hep3B and A549, as well as normal cell line L929, were conducted to assess their selectivity towards malignant cells. Compounds 7d, 7g, and 7k exhibited selective cytotoxicity towards the Hep3B cell line, with reduced selectivity towards A549, whereas compound 7j demonstrated higher selectivity for the A549 cell line. Additionally, molecular docking studies were performed to elucidate the binding modes of these compounds within the active sites of hCAs, revealing crucial interactions that underpin their significant activity and selectivity for the tumor-specific isoforms.
Collapse
Affiliation(s)
- Aida Buza
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Sciences, Sakarya University Sakarya 54187 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University Ardahan 75700 Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University Samsun 55020 Turkey
| | - Arleta Rifati Nixha
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina Prishtina 1000 Republic of Kosova
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
2
|
Özaslan MS. Investigation of Potential Effects of Some Indole Compounds on the Glutathione S-Transferase Enzyme. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:553-561. [PMID: 38648772 DOI: 10.1134/s0006297924030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Glutathione S-transferases (GSTs) belong to the superfamily of multifunctional detoxification isoenzymes with an important role in cellular signaling. They can prevent reactive electrophilic compounds from harming the body by covalently binding identical type of moleculs to each other. GSTs can be used alone or in combination for cancer detection or diagnosis, in addition to therapeutic interventions. In recent years, indoles have become important due to their structural properties and biological activities such as antitubercular, antiulcer, anti-oxidant, and antidiabetic, as well as for the development of new anticancer agents. The current research investigated effects of some indoles with 3-carboxaldehyde structure on the GST enzyme activity. Impacts of various concentrations of indoles on the in vitro GST activity were examined. While IC50 values for the compounds ranged from 0.042 to 1.570 mM, Ki values changed between 0.018 ± 0.01 and 1.110 ± 0.15 mM. 6-Methylindole-3-carboxaldehyde (1b) exhibited the highest inhibitory effect among the indoles examined. Indole derivatives used in the study can be evaluated in further pharmacological studies due to their effects on GST activity.
Collapse
Affiliation(s)
- Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey.
| |
Collapse
|
3
|
Caglayan C, Temel Y, Türkeş C, Ayna A, Ece A, Beydemir Ş. The effects of morin and methotrexate on pentose phosphate pathway enzymes and GR/GST/TrxR enzyme activities: An in vivo and in silico study. Arch Pharm (Weinheim) 2024; 357:e2300497. [PMID: 37972283 DOI: 10.1002/ardp.202300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Yusuf Temel
- Department of Solhan School of Health Services, Bingol University, Bingol, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingol, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
4
|
Sulumer AN, Palabıyık E, Avcı B, Uguz H, Demir Y, Serhat Özaslan M, Aşkın H. Protective effect of bromelain on some metabolic enzyme activities in tyloxapol-induced hyperlipidemic rats. Biotechnol Appl Biochem 2024; 71:17-27. [PMID: 37749825 DOI: 10.1002/bab.2517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Elevation of one or more plasma lipids, such as phospholipids, cholesterol esters, cholesterol, and triglycerides, is known as hyperlipidemia. In humans and experimental animals, bromelain, the primary active ingredient isolated from pineapple stems, has several positive effects, including anti-tumor growth, anticoagulation, and anti-inflammation. Hence, the purpose of this study was to determine the possible protective impact of bromelain on some metabolic enzymes (paraoxonase-1, glutathione S-transferase, glutathione reductase, sorbitol dehydrogenase [SDH], aldose reductase [AR], butyrylcholinesterase [BChE], and acetylcholinesterase [AChE]), activity in the heart, kidney, and liver of rats with tyloxapol-induced hyperlipidemia. Rats were divided into three groups: control group, HL-control group (tyloxapol 400 mg/kg, i.p. administered group), and HL+bromelain (group receiving bromelain 250 mg/kg/o.d. prior to administration of tyloxapol 400 mg/kg, i.p.). BChE, SDH, and AR enzyme activities were significantly increased in all tissues in HL-control compared to the control, whereas the activity of other studied enzymes was significantly decreased. Bromelain had a regulatory effect on all tissues and enzyme activities. In conclusion, these results prove that bromelain is a new mediator that decreases hyperlipidemia.
Collapse
Affiliation(s)
- Ayşe Nurseli Sulumer
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Esra Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bahri Avcı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Handan Uguz
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Muhammet Serhat Özaslan
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hakan Aşkın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Zhang Y, Jiang C, Meng N. Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis. Mini Rev Med Chem 2024; 24:1262-1276. [PMID: 38284727 DOI: 10.2174/0113895575273164231130070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
6
|
Devi AM, Sankeshi V, Ravali A, Bandaru S, Theendra VK, Sagurthi SR. Inhibitory effect of Nifedipine on aldose reductase delays cataract progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:161-171. [PMID: 37395794 DOI: 10.1007/s00210-023-02588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Aldose reductase (ALR2) is a rate-limiting component of the polyol pathway, which is essential for the NADPH-mediated conversion from glucose to sorbitol. ALR2 dysregulation has been linked to α-crystallin aggregation, increased oxidative stress, and calcium inflow, all of which contribute to a diabetic cataract. Given its crucial role in occular pathologies, ALR2 has emerged as a promising target to treat oxidative stress and hyperglycaemic condition which form the underlying cause of diabetic cataracts. However, several of them had issues with sensitivity and specificity to ALR2, despite being screened as effective ALR2 inhibitors from a wide range of structurally varied molecules. The current study investigates the inhibitory potential of Nifedipine, an analog of the dihydro nicotinamide class of compounds against ALR2 activity. The enzyme inhibition studies were supported by in vitro biomolecular interactions, molecular modeling approaches, and in vivo validation in diabetic rat models. Nifedipine demonstrated appreciable inhibitory potential with the purified recombinant hAR (human aldose reductase; with an IC50 value of 2.5 µM), which was further supported by Nifedipine-hAR binding affinity (Kd = 2.91 ± 1.87 × 10-4 M) by ITC and fluorescence quenching assays. In the in vivo models of STZ-induced diabetic rats, Nifedipine delayed the onset progression of cataracts by preserving the antioxidant enzyme activity (SOD, CAT, and GPX GSH, TBARS, and protein carbonyls) and was shown to retain the α-crystallin chaperone activity by reducing the calcium levels in the diabetic rat lens. In conclusion, our results demonstrate effective inhibition of ALR2 by Nifedipine, resulting in amelioration of diabetic cataract conditions by lowering oxidative and osmotic stress while retaining the chaperone activity of α-crystallins. The present study could be envisaged to improve the eye condition in older adults upon Nifedipine treatment.
Collapse
Affiliation(s)
- Alaparthi Malini Devi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Venu Sankeshi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Arugonda Ravali
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Srinivas Bandaru
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Guntur, 522302, India
| | | | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India.
| |
Collapse
|
7
|
Erdoğan M, Serdar Çavuş M, Muğlu H, Yakan H, Türkeş C, Demir Y, Beydemir Ş. Synthesis, Theoretical, in Silico and in Vitro Biological Evaluation Studies of New Thiosemicarbazones as Enzyme Inhibitors. Chem Biodivers 2023; 20:e202301063. [PMID: 37769192 DOI: 10.1002/cbdv.202301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Eleven new thiosemicarbazone derivatives (1-11) were designed from nine different biologically and pharmacologically important isothiocyanate derivatives containing functional groups such as fluorine, chlorine, methoxy, methyl, and nitro at various positions of the phenyl ring, in addition to the benzyl unit in the molecular skeletal structure. First, their substituted-thiosemicarbazide derivatives were synthesized from the treatment of isothiocyanate with hydrazine to synthesize the designed compounds. Through a one-step easy synthesis and an eco-friendly process, the designed compounds were synthesized with yields of up to 95 % from the treatment of the thiosemicarbazides with aldehyde derivatives having methoxy and hydroxy groups. The structures of the synthesized molecules were elucidated with elemental analysis and FT-IR, 1 H-NMR, and 13 C-NMR spectroscopic methods. The electronic and spectroscopic properties of the compounds were determined by the DFT calculations performed at the B3LYP/6-311++G(2d,2p) level of theory, and the experimental findings were supported. The effects of some global reactivity parameters and nucleophilic-electrophilic attack abilities of the compounds on the enzyme inhibition properties were also investigated. They exhibited a highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (KI values are in the range of 23.54±4.34 to 185.90±26.16 nM, 103.90±23.49 to 325.90±77.99 nM, and 86.15±18.58 to 287.70±43.09 nM for AChE, hCA I, and hCA II, respectively). Furthermore, molecular docking simulations were performed to explain each enzyme-ligand complex's interaction.
Collapse
Affiliation(s)
- Musa Erdoğan
- Department of Food Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey
| | - M Serdar Çavuş
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37200, Kastamonu, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty of Sciences, Kastamonu University, 37200, Kastamonu, Turkey
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey, Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Samsun, 55200, Turkey
| |
Collapse
|
8
|
Dincer B, Yildiztekin G, Cinar I. Unlocking Synergistic Potential: Agomelatine Enhances the Chemotherapeutic Effect of Paclitaxel in Breast Cancer Cell Through MT1 Melatonin Receptors and ER-alpha Axis. Chem Biodivers 2023; 20:e202301093. [PMID: 37690997 DOI: 10.1002/cbdv.202301093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the potential of agomelatine (AGO), a synthetic melatoninergic drug, in combination with paclitaxel (PTX) for the treatment of breast cancer. The effects of AGO, PTX and melatonin (MTN) on breast cancer cell viability were investigated, focusing on the role of MT1 receptors. Cell viability and gene expression were analyzed in MCF-7 and MDA-MB-231 breast cancer cell experiments. The results show that AGO has cytotoxic effects on breast cancer cells similar to MTN. Combining AGO and MTN with PTX showed synergistic effects in MCF-7 cells. The study also reveals differences in the molecular mechanisms of breast cancer between estrogen-positive MCF-7 cells and estrogen-negative MDA-MB-231 cells. Combination with AGO and PTX affects apoptosis-associated proteins in both cell types. The findings suggest that AGO, combined with PTX, may be a promising adjuvant therapy for breast cancer and highlight the importance of MTN receptors in its mechanism of action.
Collapse
Affiliation(s)
- Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, 55100, Turkey
| | - Gizem Yildiztekin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, 37150, Turkey
| |
Collapse
|
9
|
Lolak N, Akocak S, Durgun M, Duran HE, Necip A, Türkeş C, Işık M, Beydemir Ş. Novel bis-ureido-substituted sulfaguanidines and sulfisoxazoles as carbonic anhydrase and acetylcholinesterase inhibitors. Mol Divers 2023; 27:1735-1749. [PMID: 36136229 DOI: 10.1007/s11030-022-10527-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
To discover alternative substances to compounds used to treat many diseases, especially treating Alzheimer's disease (AD) and Parkinson's disease targeting carbonic anhydrase (hCA) and acetylcholinesterase (AChE) enzymes, is important. For this purpose, a series of novel bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives were synthesized, and their inhibitory capacities were screened against hCA isoenzymes (hCA I and II) and AChE. Possible binding mechanisms of inhibitors to the active site were elucidated by in silico studies, and the results were supported by in vitro results. Moreover, the percent radical scavenging capacities of the derivatives were also evaluated. The derivatives (SG1-4 and SO1-4) were more effective against hCAs compared to standard drug acetazolamide (KI values of 98.28-439.17 nM for hCA I and II, respectively) and exhibited the highest inhibition with the KIs in the ranges of 2.54 ± 0.50-41.02 ± 7.52 nM for hCA I, 11.20 ± 2.97-67.14 ± 13.58 nM for hCA II, and 257.60 ± 27.84-442.60 ± 52.13 nM for AChE. Also, compounds SG1 and SO1 also showed ABTS radical scavenging activity at the rate of 70% and 78%, respectively. These results will contribute to the literature for the rational design and synthesis of new potent and selective inhibitors targeting hCAs and AChE with multifunctional effects such as radical scavenging as well as inhibition. This study focused on the synthesis and inhibitory effects of bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives against human hCA I and II isoforms and AChE. In order to test synthesized derivatives' free radical scavenging potentials were the DPPH and ABTS assays. In silico studies elucidated possible binding mechanisms of inhibitors to the active site.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey.
| | - Süleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040, Adiyaman, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, 63290, Şanlıurfa, Turkey
| | - Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Adem Necip
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, 63300, Şanlıurfa, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey.
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
10
|
Demir Y, Tokalı FS, Kalay E, Türkeş C, Tokalı P, Aslan ON, Şendil K, Beydemir Ş. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors. Mol Divers 2023; 27:1713-1733. [PMID: 36103032 DOI: 10.1007/s11030-022-10526-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Turkey.
| | - Feyzi Sinan Tokalı
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, 36100, Kars, Turkey
| | - Erbay Kalay
- Department of Material and Material Processing Technologies, Kars Vocational School, Kafkas University, 36100, Kars, Turkey.
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Turkey
| | - Pelin Tokalı
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Osman Nuri Aslan
- East Anatolian High Technology Application and Research Center, Atatürk University, 25240, Erzurum, Turkey
| | - Kıvılcım Şendil
- Department of Chemistry, Faculty of Arts and Science, Kafkas University, 36100, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| |
Collapse
|
11
|
Korkmaz IN, Güller U, Kalın R, Özdemir H, Küfrevioğlu Öİ. Structure-Activity Relationship of Methyl 4-Aminobenzoate Derivatives as Being Drug Candidate Targeting Glutathione Related Enzymes: in Vitro and in Silico Approaches. Chem Biodivers 2023; 20:e202201220. [PMID: 37043708 DOI: 10.1002/cbdv.202201220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Uğur Güller
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, 76100, Türkiye
| | - Ramazan Kalın
- Department of Basic Science, Faculty of Science, Erzurum Technical University, Erzurum, 25700, Türkiye
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, 25240, Türkiye
| |
Collapse
|
12
|
Ileriturk M, Kandemir FM. Carvacrol protects against λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity by modulating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947485 DOI: 10.1002/tox.23784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
λ-Cyhalothrin, a type II synthetic pyrethroid, has been widely used in households, agriculture, public health, and gardening to control insect pests. Despite its widespread usage, it is known to induce a variety of adverse effects, including hepatotoxicity and nephrotoxicity. The goal of this study was to investigate the protective effect of carvacrol, which has antioxidant, anti-inflammatory, anti-apoptotic, and some other properties, on λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity 35 male Sprague-Dawley rats were randomly divided into five groups for this purpose: I-Control group: II-CRV group (50 mg/kg carvacrol), III-LCT group (6.23 mg/kg LCT), IV-LCT + CRV 25 group (6.23 mg/kg LCT + 25 mg/kg carvacrol), and V-LCT + CRV 50 group (6.23 mg/kg LCT + 50 mg/kg carvacrol). Using biochemical, real-time PCR, and western blotting methods, the collected tissues were analyzed. While λ-Cyhalothrin treatment increased MDA levels, which are indicated of lipid peroxidation, but reduced SOD, CAT, GPx activities, and GSH levels. After receiving carvacrol therapy, the degree of oxidative stress reduced as the values of these parameters approached those of the control group. Increased inflammation, apoptosis, endoplasmic reticulum stress, and autophagy with λ-Cyhalothrin administration reduced with carvacrol co-administration, and liver and kidney tissues were protected from damage, depending on the degree of oxidative stress. After considering all of these data, it was discovered that λ-Cyhalothrin-induced oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy in the liver and kidneys; however, carvacrol protected the tissues from damage. Our findings indicate that carvacrol may be a promising protective agent in λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
13
|
Palabıyık E, Sulumer AN, Uguz H, Avcı B, Askın S, Askın H, Demir Y. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J Mol Recognit 2023; 36:e3004. [PMID: 36537558 DOI: 10.1002/jmr.3004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis and cognitive impairment are both influenced by hyperlipidemia. Due to their high margin of safety and low cost, natural chemicals have recently attracted particular attention in the context of the treatment of disease. Hence, the purpose of this study was to investigate the possible amendatory impact of ethanol extract walnut (Juglans regia) seed coat (E-WSC) on some metabolic enzymes (glutathione reductase (GR), paraoxonase-1 (PON1), aldose reductase (AR), sorbitol dehydrogenase (SDH), acetylcholinesterase (AChE), glutathione S-transferase (GST), and butyrylcholinesterase (BChE)) activity in the liver, kidney, and heart of rats with Triton WR-1339-induced hyperlipidemia. Rats were divided into five groups: control group, HL-Control group (Triton WR-1339 400 mg/kg, i.p administered group), E- WSC + 150 (150 mg/kg,o.d given group), E- WSC + 300 (E- WSC 300 mg/kg, o.d given group) and HL+ E-WSC + 300 (Group receiving E- WSC 300 mg/kg, o.d 30 min prior to administration of Triton WR-1339 400 mg/kg, i.p). In HL-Control, AR, SDH, and BChE enzyme activity was significantly increased in all tissues compared to the control, while the activity of other studied enzymes was significantly decreased. The effects of hyperlipidemia on balance were improved and alterations in the activity of the investigated metabolic enzymes were prevented by E-WSC. As a result, promising natural compounds that can be used as adjuvant therapy in the treatment of cognitive disorders and hyperlipidemia may be found in E-WSC powder.
Collapse
Affiliation(s)
- Esra Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ayşe Nurseli Sulumer
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Handan Uguz
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Bahri Avcı
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Seda Askın
- Health Services Vocational School, Ataturk University, Erzurum, Turkey
| | - Hakan Askın
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| |
Collapse
|
14
|
Türkeş C, Demir Y, Biçer A, Cin GT, Gültekin MS, Beydemir Ş. Exploration of Some Bis‐Sulfide and Bis‐Sulfone Derivatives as Non‐Classical Aldose Reductase İnhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Abdullah Biçer
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| | - Günseli Turgut Cin
- Department of Chemistry Faculty of Science Akdeniz University Antalya 07058 Turkey
| | | | - Şükrü Beydemir
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
| |
Collapse
|
15
|
Duran HE. Pyrimidines: Molecular docking and inhibition studies on carbonic anhydrase and cholinesterases. Biotechnol Appl Biochem 2023; 70:68-82. [PMID: 35112394 DOI: 10.1002/bab.2329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. The disease is characterized by dementia, memory impairment, cognitive impairment, and speech impairment. Cholinesterases (ChEs; AChE, acetylcholinesterase and BChE, butyrylcholinesterase) inhibitors and their benefits of cholinergic replacement in the treatment of AD have been researched and documented by scientists in various ways to date. Recent studies prove that human carbonic anhydrases (hCAs) are also one of the important targets in the treatment of AD. Therefore, the development of new agents that can simultaneously modulate the various mechanisms or targets involved in the AD pathway may be a powerful strategy to treat AD, the current disease. Considering these data, the effects of the pyrimidines (1-7) were investigated in this study for the discovery and development of multitargeted ChEs and hCAs inhibitors associated with AD. In addition, the molecular docking analysis of the 4-amino-2-choloropyrimidine (2) was performed to understand the binding interactions on the active site of the enzyme. All compounds (1-7) showed satisfactory enzyme inhibitory potency in micromolar concentrations against AChE, BChE, hCAI, and hCAII with KI values ranging from 0.099 to 0.241 μM, from 1.324 to 3.418 μM, from 0.201 to 0.884 μM, from 1.867 to 3.913 μM, respectively. Due to their ChEs and hCAs inhibition, these compounds (1-7) may be considered as leads for investigations in neurodegenerative diseases. All these results revealed that the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.201 ± 0.041 μM for hCA I), the 4-amino-6-hydroxypyrimidine (4) (KI value of 1.867 ± 0.296 μM for hCA II), the 4-amino-5,6-dichloropyrimidine (7) (KI value of 0.099 ± 0.008 μM for AChE), and the 4-amino-2-chloropyrimidine (2) (KI value of 1.324 ± 0.273 μM for BChE) from the pyrimidines in this series were the most promising derivatives, as they exhibited a good multifunctional inhibition at all experimental levels and in the in silico validation against these enzymes, for the treatment of AD.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
16
|
Yakan H, Muğlu H, Türkeş C, Demir Y, Erdoğan M, Çavuş MS, Beydemir Ş. A novel series of thiosemicarbazone hybrid scaffolds: Design, Synthesis, DFT studies, metabolic enzyme inhibition properties, and molecular docking calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Duran HE, Beydemir Ş. Recombinant human carbonic anhydrase VII: Purification, characterization, inhibition, and molecular docking studies. Biotechnol Appl Biochem 2023; 70:415-428. [PMID: 35638720 DOI: 10.1002/bab.2367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/01/2022] [Indexed: 11/05/2022]
Abstract
Human carbonic anhydrase VII (hCA VII), a cytosolic enzyme, defends against oxidative stress by preventing reactive oxygen species from forming. In our study, first, hCA VII was cloned into Escherichia coli (One Shot Mach1-T1R) strain by using cDNA of the human brain and successfully expressed. The integrity of the plasmid generated by colony PCR was checked, and after, for protein expression, the plasmid was transformed into E. coli BL21 (DE-3) strain. hCA VII expression was observed after 6 h of isopropyl-D-1-thiogalactopyranoside (IPTG) induction. The fusion protein containing hexahistidine (6xHis) was purified with 7.02 EU/mg of specific activity, had 48.07% of purification yield, and approximately 21-folds using a ProbondTM nickel chelating resin affinity column. Then, both molecular mass determination and purity control of the purified recombinant enzyme was done by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The mass of the SUMO-hCA VII fusion protein was calculated as 46.77 kDa. As a result of Western blot analysis using anti-His G-HRP antibody, the fusion protein was detected as approximately 45 kDa. Furthermore, the characterization assays and in vitro inhibition studies were done for the recombinant enzyme. KI values of these agents were found between 0.29 μM and 157.6 mM. Finally, molecular docking investigations of these antibiotics were undertaken to understand further the binding interactions on the active site of this recombinant enzyme.
Collapse
Affiliation(s)
- Hatice Esra Duran
- Department of Medical Biochemistry, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
18
|
Demir Y, Türkeş C, Küfrevioğlu Öİ, Beydemir Ş. Molecular Docking Studies and the Effect of Fluorophenylthiourea Derivatives on Glutathione-Dependent Enzymes. Chem Biodivers 2023; 20:e202200656. [PMID: 36538730 DOI: 10.1002/cbdv.202200656] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a serious problem affecting the health of all human societies. Chemotherapy refers to the use of drugs to kill cancer or the origin of cancer. In the past three decades, researchers have studied about proteins and their roles in the production of cancer cells. Glutathione S-transferases (GSTs) are a superfamily of enzymes that play a key role in cellular detoxification, protecting against reactive electrophiles attacks, including chemotherapeutic agents. Glutathione reductase (GR) is an important antioxidant enzyme involved in protecting the cell against oxidative stress. In this current study, GST and GR enzymes were purified from human erythrocytes using affinity chromatography. GR was obtained with a specific activity of 5.95 EU/mg protein and a 52.38 % yield. GST was obtained with a specific activity of 4.88 EU/mg protein and a 74.88 % yield. The effect of fluorophenylthiourea derivatives on the purified enzymes was investigated. Afterward, KI values were found to range from 23.04±4.37 μM-59.97±13.45 μM for GR and 7.22±1.64 μM-41.24±2.55 μM for GST. 1-(2,6-difluorophenyl)thiourea was showed the best inhibition effect for both GST and GR enzymes. The relationships of inhibitors with 3D structures of GST and GR were explained by molecular docking studies.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24100, Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| |
Collapse
|
19
|
Türkeş C, Demir Y, Beydemir Ş. In Vitro
Inhibitory Activity and Molecular Docking Study of Selected Natural Phenolic Compounds as AR and SDH Inhibitors**. ChemistrySelect 2022. [DOI: 10.1002/slct.202204050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|
20
|
Türkeş C, Arslan M, Demir Y, Çoçaj L, Nixha AR, Beydemir Ş. N-substituted phthalazine sulfonamide derivatives as non-classical aldose reductase inhibitors. J Mol Recognit 2022; 35:e2991. [PMID: 36073557 DOI: 10.1002/jmr.2991] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023]
Abstract
Aldose reductase (AR, AKR1B1; EC 1.1.1.21) is an aldo-keto reductase that has been widely investigated as an enzyme crucially involved in the pathogenesis of several chronic complications, including nephropathy, neuropathy, retinopathy, and cataracts associated with diabetes mellitus. Although sulfonamides have been reported to possess many other biological activities, in continuation of our interest in designing and discovering potent inhibitors of AR, herein, we have evaluated the AR inhibitory potential of N-substituted phthalazine sulfonamide derivatives 5a-l. The biological studies revealed that all the derivatives show excellent activity against AR, with KI constants ranging from 67.73 to 495.20 nM. Among these agents, 4-(6-nitro-1,4-dioxo-1,2,3,4-tetrahydrophthalazine-2-carbonyl)benzenesulfonamide (5e) and 1,4-dioxo-3-(4-sulfamoylbenzoyl)-1,2,3,4-tetrahydrophthalazine-6-carboxylic acid (5f) showed prominent inhibitory activity with KI values of 67.73 and 148.20 nM, respectively, vs AR and were found to be more potent than epalrestat (KI = 852.50 nM), the only AR inhibitor currently used in the therapy. Moreover, molecular docking studies were also performed to rationalize binding site interactions of these sulfonamides (5a-l) with the target enzyme AR. According to ADME-Tox, predicts were also determined that these derivatives be ARIs displaying suitable drug-like properties. The sulfonamides identified in this study may be used to develop lead therapeutic agents inhibiting diabetic complications.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Liridon Çoçaj
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, Prishtina University, Republic of Kosova, Serbia
| | - Arleta Rifati Nixha
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, Prishtina University, Republic of Kosova, Serbia
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
21
|
Yıldız ML, Demir Y, Küfrevioğlu ÖI. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes. J Mol Recognit 2022; 35:e2987. [PMID: 36326002 DOI: 10.1002/jmr.2987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023]
Abstract
Inhibition studies of enzymes in the pentose phosphate pathway (PPP) have recently emerged as a promising technique for pharmacological intervention in several illnesses. Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) are the most important enzymes of the PPP. For this purpose, in the current study, we examined the effect of some fluorophenylthiourea on G6PD and 6PGD enzyme activity. These compounds exhibited moderate inhibitory activity against G6PD and 6PGD with KI values ranging from 21.60 ± 8.42 to 39.70 ± 11.26 μM, and 15.82 ± 1.54 to 29.97 ± 5.72 μM, respectively. 2,6-difluorophenylthiourea displayed the most potent inhibitory effect for G6PD, and 2-fluorophenylthiourea demonstrated the most substantial inhibitory effect for 6PGD. Furthermore, the molecular docking analyses of the fluorophenylthioureas, competitive inhibitors, were performed to understand the binding interactions at the enzymes' binding site.
Collapse
Affiliation(s)
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | | |
Collapse
|
22
|
Buldurun K, Aras A, Turan N, Turkan F, Adiguzel R, Bursal E. Synthesis and Characterization of Azo Dye Complexes as Potential Inhibitors of Acetylcholinesterase, Butyrylcholinesterase, and Glutathione S‐Transferase. ChemistrySelect 2022. [DOI: 10.1002/slct.202203365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenan Buldurun
- Health Services Vocational School Mus Alparslan University 49250 Mus Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts Igdır University 76000 Igdır Turkey
| | - Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences Mus Alparslan University 49250 Mus Turkey
| | - Fikret Turkan
- Department of Basic Sciences, Faculty of Dentistry Igdır University 76000 Igdır Turkey
| | - Ragip Adiguzel
- Department of Chemistry and Chemical Process Technologies, Tunceli Vocational School Munzur University 62000 Tunceli Turkey
| | - Ercan Bursal
- Department of Nursing, Faculty of Health Mus Alparslan University 49250 Mus Turkey
| |
Collapse
|
23
|
Korkmaz IN, Özdemir H. Synthesis and Anticancer Potential of New Hydroxamic Acid Derivatives as Chemotherapeutic Agents. Appl Biochem Biotechnol 2022; 194:6349-6366. [PMID: 35917102 DOI: 10.1007/s12010-022-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been shown to induce differentiation, cell cycle arrest, and apoptosis due to their low toxicity, inhibiting migration, invasion, and angiogenesis in many cancer cells. Studies show that hydroxamic acids are generally used as anticancers. For this reason, it is aimed to synthesize new derivatives of hydroxamic acids, to examine the anticancer properties of these candidate inhibitors, and to investigate the inhibition effects on some enzymes that cause multidrug resistance in cancer cells. For this reason, new (4-amino-2-methoxy benzohydroxamic acid (a), 4-amino-3-methyl benzohydroxamic acid (b), 3-amino-5-methyl benzohydroxamic acid (c)) amino benzohydroxamic acid derivatives were synthesized in this study. The effects on healthy fibroblast, lung (A549), and cervical (HeLa) cancer cells were investigated. In addition, their effects on TRXR1, GST, and GR activities, which are important for the development of chemotherapeutic strategies, were also examined. It was determined that molecule b was the most effective molecule in HeLa cancer cells with the lowest IC50 value of 0.54. It was determined that molecule c was the most effective molecules for A549 and HeLa cancer cells, with the lowest IC50 values of 0.78 mM and 0.25 mM, respectively. It was determined that b and c molecules directed cancer cells to necrosis rather than apoptosis. c molecule showed anticancer effect in A549 and HeLa cancer cells. It was found that molecule c significantly suppressed both GR and TRXR1 activities. In GST activities, however, inhibitors did not have a significant effect on cancer cells.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey
| | - Hasan Özdemir
- Faculty of Science, Department of Chemistry, Atatürk University, Erzurum, 25240, Turkey.
| |
Collapse
|
24
|
Korkmaz IN, Türkeş C, Demir Y, Öztekin A, Özdemir H, Beydemir Ş. Biological evaluation and in silico study of benzohydrazide derivatives as paraoxonase 1 inhibitors. J Biochem Mol Toxicol 2022; 36:e23180. [PMID: 35916346 DOI: 10.1002/jbt.23180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
Serum paraoxonase 1 (PON1) is found in all mammalian species and is a calcium-dependent hydrolytic enzyme. PON1 hydrolyze several substrates, including carbonates, esters, and organophosphates. In the current study, we aimed to investigate the effect of the presynthesized benzohydrazide derivatives (1-9) on PON1 activity. Benzohydrazide compounds moderate inhibited PON1 with the half-maximal inhibitory concentration values ranging from 76.04 ± 13.51 to 221.70 ± 13.59 μM and KI values ranging from 38.75 ± 12.21 to 543.50 ± 69.76 μM. Compound 4 (2-amino-4-chlorobenzohydrazide) showed the best inhibition (KI = 38.75 ± 12.21 μM). Molecular docking and ADME-Tox studies of benzohydrazide derivatives were also carried out. In this context, we hope that the results obtained in this study contribute to the determination of the side effects of current and new benzohydrazide-based pharmacological compounds to be developed.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Aykut Öztekin
- Department of Medical Services and Techniques, Vocational School of Health Services, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
25
|
Korkmaz IN, Türkeş C, Demir Y, Özdemir H, Beydemir Ş. Methyl benzoate derivatives: in vitro Paraoxonase 1 inhibition and in silico studies. J Biochem Mol Toxicol 2022; 36:e23152. [PMID: 35708184 DOI: 10.1002/jbt.23152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022]
Abstract
Paraoxonase 1 (PON1) can metabolize some compounds such as aromatic carboxylic acid and unsaturated aliphatic esters, arylesters, cyclic carbonate, plucuronide drugs, some carbamate insecticide classes, nerve gases, and lactone compounds. Methyl benzoate has recently been shown to display potent toxicity against several insect species. In the current study, we aimed to investigate the effect of the methyl benzoate compounds (1-17) on PON1 activity. Methyl benzoate compounds inhibited PON1 with KI values ranging from 25.10 ± 4.73 to 502.10 ± 64.72 μM. Compound 10 (methyl 4-amino-2-bromo benzoate) showed the best inhibition (KI = 25.10 ± 4.73 μM). Furthermore, using the ADME-Tox, Glide XP, and MM-GBSA tools of the Schrödinger Suite 2021-4, a complete ligand-receptor interaction prediction was performed to characterize the methyl benzoates (1-17), probable binding modalities versus the PON1.
Collapse
Affiliation(s)
- Işıl Nihan Korkmaz
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
26
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Yeni Y, Hacımüftüoğlu A, Ereminsoy E, Küfrevioğlu Öİ, Beydemir Ş. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol Divers 2022; 26:2825-2845. [PMID: 35397086 PMCID: PMC8994094 DOI: 10.1007/s11030-022-10422-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract The acetylcholinesterase and carbonic anhydrase inhibitors (AChEIs and hCAIs) remain key therapeutic agents for many bioactivities such as anti-Alzheimer and antiobesity antiepileptic, anticancer, antiinfective, antiglaucoma, and diuretic effects. Here, it has been attempted to discover novel multi-target AChEIs and hCAIs that are highly potent, orally bioavailable, may be brain penetrant, and have higher effectiveness at lower doses than tacrine and acetazolamide. After detailed investigations both in vitro and in silico, novel N-substituted sulfonyl amide derivatives (6a–j) were determined to be highly potent inhibitors for AChE and hCAs (KIs are in the range of 23.11–52.49 nM, 18.66–59.62 nM, and 9.33–120.80 nM for AChE, hCA I, and hCA II, respectively). Moreover, according to the cytotoxic effect studies, such as the ADME-Tox, cortex neuron cells, and neuroblastoma SH-SY5Y cell line, compounds 6a, 6d, and 6h, which are the most potent representative versus the target enzymes, were identified as orally bioavailable, highly selective, and brain preferentially distributed AChEIs and hCAIs. The docking studies revealed precise binding modes between 6a, 6d, and 6h and hCA II, hCA I, and AChE, respectively. The results presented here might provide a solid basis for further investigation into more potent AChEIs and hCAIs. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10422-8.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Türkiye.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Türkiye
| | - Yeşim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ergün Ereminsoy
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Türkiye.,The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Türkiye
| |
Collapse
|
27
|
Türkeş C, Demir Y, Beydemir Ş. Infection Medications: Assessment In‐Vitro Glutathione S‐Transferase Inhibition and Molecular Docking Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202103197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Erzincan 24002 Turkey
| | - Yeliz Demir
- Department of Pharmacy Services Nihat Delibalta Göle Vocational High School Ardahan University Ardahan 75700 Turkey
| | - Şükrü Beydemir
- Department of Biochemistry Faculty of Pharmacy Anadolu University Eskişehir 26470 Turkey
- The Rectorate of Bilecik Şeyh Edebali University Bilecik 11230 Turkey
| |
Collapse
|