1
|
Singleton AH, Bergum OET, Søgaard CK, Røst LM, Olsen CE, Blindheim FH, Ræder SB, Bjørnstad FA, Sundby E, Hoff BH, Bruheim P, Otterlei M. Activation of multiple stress responses in Staphylococcus aureus substantially lowers the minimal inhibitory concentration when combining two novel antibiotic drug candidates. Front Microbiol 2023; 14:1260120. [PMID: 37822747 PMCID: PMC10564113 DOI: 10.3389/fmicb.2023.1260120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
The past few decades have been plagued by an increasing number of infections caused by antibiotic resistant bacteria. To mitigate the rise in untreatable infections, we need new antibiotics with novel targets and drug combinations that reduce resistance development. The novel β-clamp targeting antimicrobial peptide BTP-001 was recently shown to have a strong additive effect in combination with the halogenated pyrrolopyrimidine JK-274. In this study, the molecular basis for this effect was examined by a comprehensive proteomic and metabolomic study of the individual and combined effects on Staphylococcus aureus. We found that JK-274 reduced activation of several TCA cycle enzymes, likely via increasing the cellular nitric oxide stress, and BTP-001 induced oxidative stress in addition to inhibiting replication, translation, and DNA repair processes. Analysis indicated that several proteins linked to stress were only activated in the combination and not in the single treatments. These results suggest that the strong additive effect is due to the activation of multiple stress responses that can only be triggered by the combined effect of the individual mechanisms. Importantly, the combination dose required to eradicate S. aureus was well tolerated and did not affect cell viability of immortalized human keratinocyte cells, suggesting a species-specific response. Our findings demonstrate the potential of JK-274 and BTP-001 as antibiotic drug candidates and warrant further studies.
Collapse
Affiliation(s)
- Amanda Holstad Singleton
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Caroline Krogh Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lisa Marie Røst
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Cecilie Elisabeth Olsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Fredrik Heen Blindheim
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Synnøve Brandt Ræder
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Frithjof A. Bjørnstad
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eirik Sundby
- Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Per Bruheim
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Aarhus TI, Bjørnstad F, Wolowczyk C, Larsen KU, Rognstad L, Leithaug T, Unger A, Habenberger P, Wolf A, Bjørkøy G, Pridans C, Eickhoff J, Klebl B, Hoff BH, Sundby E. Synthesis and Development of Highly Selective Pyrrolo[2,3- d]pyrimidine CSF1R Inhibitors Targeting the Autoinhibited Form. J Med Chem 2023; 66:6959-6980. [PMID: 37191268 DOI: 10.1021/acs.jmedchem.3c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Colony-stimulating factor-1 receptor (CSF1R) is a receptor tyrosine kinase that controls the differentiation and maintenance of most tissue-resident macrophages, and the inhibition of CSF1R has been suggested as a possible therapy for a range of human disorders. Herein, we present the synthesis, development, and structure-activity relationship of a series of highly selective pyrrolo[2,3-d]pyrimidines, showing subnanomolar enzymatic inhibition of this receptor and with excellent selectivity toward other kinases in the platelet-derived growth factor receptor (PDGFR) family. The crystal structure of the protein and 23 revealed that the binding conformation of the protein is DFG-out-like. The most promising compounds in this series were profiled for cellular potency and subjected to pharmacokinetic profiling and in vivo stability, indicating that this compound class could be relevant in a potential disease setting. Additionally, these compounds inhibited primarily the autoinhibited form of the receptor, contrasting the behavior of pexidartinib, which could explain the exquisite selectivity of these structures.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Frithjof Bjørnstad
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | - Line Rognstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Trygve Leithaug
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Alexander Wolf
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bård H Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Eirik Sundby
- Department of Materials Science & Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
3
|
Bjørnstad F, Sundby E, Hoff BH. Directed Lithiation of Protected 4-Chloropyrrolopyrimidine: Addition to Aldehydes and Ketones Aided by Bis(2-dimethylaminoethyl)ether. Molecules 2023; 28:molecules28030932. [PMID: 36770597 PMCID: PMC9919650 DOI: 10.3390/molecules28030932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Pyrrolopyrimidines are important scaffolds for the preparation of bioactive molecules. Therefore, developing efficient and flexible ways for selective functionalization of the pyrrolopyrimidine skeleton is of interest. We have investigated lithiation-addition at C-6 of protected 4-chloro-7H-pyrrolo [2,3-d]pyrimidine as a route to new building blocks for medicinal chemistry. It was found that bis(2-dimethylaminoethyl) ether as an additive increased the yield in the additional reaction with benzaldehyde. Deuterium oxide quench experiments showed that this additive offered both a higher degree of lithiation and increased stability of the lithiated intermediate. The substrate scope of the protocol was investigated with 16 aldehydes and ketones, revealing the method to be excellently suited for reaction with aldehydes, cyclohexanone derivatives and 2,2,2-trifluoroacetophenone, while being less efficient for acetophenones. Yields in the range of 46-93% were obtained.
Collapse
Affiliation(s)
- Frithjof Bjørnstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
- Correspondence: ; Tel.: +47-735-93973
| |
Collapse
|
4
|
Halogenated Pyrrolopyrimidines with Low MIC on Staphylococcus aureus and Synergistic Effects with an Antimicrobial Peptide. Antibiotics (Basel) 2022; 11:antibiotics11080984. [PMID: 35892374 PMCID: PMC9330635 DOI: 10.3390/antibiotics11080984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, there is a world-wide rise in antibiotic resistance causing burdens to individuals and public healthcare systems. At the same time drug development is lagging behind. Therefore, finding new ways of treating bacterial infections either by identifying new agents or combinations of drugs is of utmost importance. Additionally, if combination therapy is based on agents with different modes of action, resistance is less likely to develop. The synthesis of 21 fused pyrimidines and a structure-activity relationship study identified two 6-aryl-7H-pyrrolo [2,3-d] pyrimidin-4-amines with potent activity towards Staphylococcus aureus. The MIC-value was found to be highly dependent on a bromo or iodo substitution in the 4-benzylamine group and a hydroxyl in the meta or para position of the 6-aryl unit. The most active bromo and iodo derivatives had MIC of 8 mg/L. Interestingly, the most potent compounds experienced a four-fold lower MIC-value when they were combined with the antimicrobial peptide betatide giving MIC of 1–2 mg/L. The front runner bromo derivative also has a low activity towards 50 human kinases, including thymidylate monophosphate kinase, a putative antibacterial target.
Collapse
|