1
|
Gierczyk B, Zalas M, Otłowski T. High-Energetic Salts and Metal Complexes: Comprehensive Overview with a Focus on Use in Homemade Explosives (HME). Molecules 2024; 29:5588. [PMID: 39683747 DOI: 10.3390/molecules29235588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Metal-containing compounds form a large and rapidly expanding group of high-energy materials. Many compounds in this class attract the attention of non-professionals, who may attempt the illegal production of explosives. Several of these substances have been commercially available and pose significant danger if used by terrorists or for criminal purposes. Others are experimental compounds, kinds of curiosities, often created by pyrotechnics enthusiasts, which can present serious risks to both the creators and their immediate surroundings. The internet hosts a vast amount of information, including recipes and discussions on forums, private websites, social media, and more. This paper aims to review the variety of metal-containing explosives and discuss their appeal and potential accessibility to unauthorized individuals.
Collapse
Affiliation(s)
- Błażej Gierczyk
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Maciej Zalas
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Tomasz Otłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Manzoor S, Younis MA, Tariq QUN, Yang JQ, Ahmad N, Qiu C, Tian B, Zhang JG. Synthesis and Study of Steering of Azido-tetrazole Behavior in Tetrazolo[1,5- c]pyrimidin-5-amine-Based Energetic Materials. J Org Chem 2024; 89:6783-6792. [PMID: 38661714 DOI: 10.1021/acs.joc.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tetrazoles and their derivatives are essential for compound synthesis due to their versatility, effectiveness, stability in air, and cost-efficiency. This has stimulated interest in developing techniques for their production. In this work, four compounds, tetrazolo[1,5-c]pyrimidin-5-amine (1), N-(4-azidopyrimidin-2-yl)nitramide (2), tetrazolo[1,5-c]pyrimidin-5(6H)-one (3), and tetrazolo[1,5-a]pyrimidin-5-amine (4), were obtained from commercially available reagents and straightforward synthetic methodologies. These new compounds were characterized by infrared (IR), 13C, and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and single-crystal X-ray diffraction. The solvent, temperature, and electron-donating group (EDG) factors that were responsible for the steering of azido-tetrazole equilibrium in all compounds were also studied. In addition, the detonation performance of the target compounds was calculated by using heats of formation (HOFs) and crystal densities. Hirshfeld surface analysis was used to examine the intermolecular interactions of the four synthesized compounds. The results show that the excellent properties of 1-4 are triggered by ionic bonds, hydrogen bonds, and π-π stacking interactions, indicating that these compounds have the potential to be used in the development of high-performance energetic materials. Additionally, DFT analysis is in support of experimental results, which proved the effect of different factors that can influence the azido-tetrazole equilibrium in the synthesized pyrimidine derivatives in the solution.
Collapse
Affiliation(s)
- Saira Manzoor
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Adnan Younis
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qamar-Un-Nisa Tariq
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jun-Qing Yang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Chuntian Qiu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Yu C, Gu B, Wang J, Chen J, Zhang W, Shi W, Yang G, Lei X, Zhu J. Valence-Oriented Electrosynthesis Strategies of Cu-Based 5-Nitrotetrazolate for Environmentally Acceptable Primary Explosives. Inorg Chem 2022; 61:19379-19387. [DOI: 10.1021/acs.inorgchem.2c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chunpei Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Bonan Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Jiaxin Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Junhong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Wenchao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Wei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Gexing Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Xiaoting Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| | - Junwu Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
- Micro-Nano Energetic Devices Key Laboratory, Ministry of Industry and Information Technology, Nanjing210094, China
| |
Collapse
|