1
|
Nesaragi AR, Kamat V, Chapi S, Guddappa H, T M S, Chandu A, Al-Zaqri N, Palem RR, Murugesan S, Kumbar VM. WELPSA: A Green Catalyst Mediated Microwave Assisted Efficient Synthesis of Novel 5-Aminopyrazole-4-Carbonitrile Derivatives as Anticancer Agents (MCF-7, A-549) and In Silico Studies. Arch Pharm (Weinheim) 2025; 358:e202500055. [PMID: 40200570 DOI: 10.1002/ardp.202500055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Malononitrile, modified hydrazine, and quinoline aldehyde were combined in a one-pot reaction under microwave irradiation to create the medicinally significant family of heterocyclic scaffolds, quinoline, coumarin, thiazole, and pyrazole 4-carbonitrile derivatives with the help of green solvent as water. WELPSA (water extract of lemon peel-soaked ash) is used to speed up the reaction in a solvent-free environment, according to more environmentally friendly reaction protocols. This methodology offers several advantages like short reaction duration, green solvent synthesis, high yield, no need for chromatographic techniques, catalyst recyclability of up to five cycles, and so on. Synthesized derivatives were evaluated for anticancer potential against lung (A549) and breast cancer cell lines. Among the tested compounds, 4i and 4j exhibited remarkable anticancer activities. Further investigations using Annexin V staining and flow cytometry revealed that both compounds effectively induced apoptosis in A549 cancer cells. Compound 4i was subjected to molecular docking and dynamic studies to understand the molecular basis of their activity, which demonstrated a strong interaction with the target protein 1m17, providing insights into its mechanism of action. These findings highlight the potential of compounds 4i and 4j as promising candidates for anticancer drug development.
Collapse
Affiliation(s)
- Aravind R Nesaragi
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Vinuta Kamat
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Sharanappa Chapi
- Department of Physics, B.M.S. College of Engineering, Bengaluru, Karnataka, India
| | - Halligudra Guddappa
- Department of Chemistry, ATME College of Engineering, Mysuru, Karnataka, India
| | - Sharanakumar T M
- Department of Chemistry, Ballari Institute of Technology and Management, Ballari, Karnataka, India
| | - Ala Chandu
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, Goyang, Gyeonggi, Republic of Korea
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education, Nehru Nagar, Belagavi, India
| |
Collapse
|
2
|
Jahanbakhshi A, Farahi M. A novel magnetic FSM-16 supported ionic liquid/Pd complex as a high performance and recyclable catalyst for the synthesis of pyrano[3,2- c]chromenes. RSC Adv 2024; 14:16401-16410. [PMID: 38779385 PMCID: PMC11110022 DOI: 10.1039/d4ra01381f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In this work, Fe3O4@FSM-16/IL-Pd was successfully designed and synthesized via a new procedure of palladium(ii) complex immobilization onto magnetic FSM-16 using an ionic liquid, as a novel heterogeneous nanocatalyst. Multiple techniques were employed to characterize this magnetic nanocatalyst such as Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FE-SEM), thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Vibrating Sample Magnetometry (VSM). After complete characterization of the catalyst, its catalytic activity was used for the synthesis of pyrano[3,2-c]chromene-3-carbonitriles via the reaction of 4-hydroxycoumarin, aldehyde, and malononitrile under solvent-free conditions. Also, it can be recovered and reused several times without a significant decrease in its catalytic activity or palladium leaching.
Collapse
Affiliation(s)
- Azar Jahanbakhshi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| | - Mahnaz Farahi
- Department of Chemistry, Yasouj University Yasouj Iran 75918-74831 +98 7412242167e
| |
Collapse
|
3
|
Kamat V, Barretto DA, Poojary B, Kumar A, Patil VB, Hamzad S. In vitro α-amylase and α-glucosidase inhibition study of dihydropyrimidinones synthesized via one-pot Biginelli reaction in the presence of a green catalyst. Bioorg Chem 2024; 143:107085. [PMID: 38183681 DOI: 10.1016/j.bioorg.2023.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
A green catalyst WELPSA-catalyzed three-component condensation (Biginelli) process involving an aldehyde, barbituric/thiobarbituric/1,3-dimethylbarbituric acid, and urea/thiourea/guanidine hydrochloride in a single pot in presence of a green solvent for the production of DHPM have been presented. The catalyst is reusable and this methodology is scalable. By using the in vitro experiments, the antidiabetic potentiality of synthesized compounds that inhibit α-amylase along with α-glucosidase efficiencies was assessed. All the synthesized compounds except for 4a and 4e, showed the most significant inhibition for α-amylase and α-glucosidase activities. Among the synthesized DHPM compounds, 4c and 4b exhibited significant inhibition profiles compared to the standard antidiabetic drug acarbose. Furthermore, synthesized substances' energy-minimized structures, 3D structures, and DFT calculations were performed using Gaussian 09 software, hybrid models, and MM2 force approaches. Strong hydrogen bonds with amino acid residues Arg-672, Arg-600, Trp-613, Asp-404, Asp-282, and Asp-616 indicate that an α-glucosidase-inhibitory peptide may have hypoglycemic efficacy confirmed by the molecular docking study of the synthesized DHPM.
Collapse
Affiliation(s)
- Vinuta Kamat
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India.
| | - Delicia A Barretto
- School of Chemical Sciences, Goa University, Taleigao Plateau-403206, Panaji, Goa, India
| | - Boja Poojary
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199, Dakshina Kannada, Karnataka, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India.
| | - Veerabhadragouda B Patil
- Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Czech Republic
| | - Shanavaz Hamzad
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Kanakapura Road, Ramanagara (D) 562112, Karnataka, India
| |
Collapse
|
4
|
Mallah D, Mirjalili BBF, Bamoniri A. Fe 3O 4@nano-almondshell/Si(CH 2) 3/2-(1-piperazinyl)ethylamine as an effective magnetite almond shell-based nanocatalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran derivatives. Sci Rep 2023; 13:6376. [PMID: 37076551 PMCID: PMC10115822 DOI: 10.1038/s41598-023-33286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
The preparation and design of nano-catalysts based on magnetic biopolymers as green and biocompatible nano-catalysts have made many advances. This paper deals with the preparation of magnetite biopolymer-based Brønsted base nano-catalyst from a nano-almond (Prunus dulcis) shell. This magnetite biopolymer-based nano-catalyst was obtained through a simple process based on the core-shelling of nano-almond shell and Fe3O4 NPs and then the immobilization of 3-chloropropyltrimethoxysilane as linker and 2-aminoethylpiperazine as a basic section. Structural and morphological analysis of this magnetite biopolymer-based nano-catalyst were done using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Vibrating sample magnetization, Energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, and Transmission electron microscopy techniques. The performance of the synthesized Fe3O4@nano-almondshell/Si(CH2)3/2-(1-piperazinyl)ethylamine as a novel magnetite biopolymer-based nano-catalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran was investigated and showed excellent efficiency.
Collapse
Affiliation(s)
- Dina Mallah
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| |
Collapse
|
5
|
Bayzidi M, Zeynizadeh B. The Immobilized Zirconocene Chloride on Magnetite‐reduced Graphene Oxide: A Highly Efficient and Reusable Heterogeneous Nanocatalyst for One‐pot Three‐component Synthesis of Tetrahydrobenzo[
b
]pyrans and Dihydropyrano[3,2‐
c
]chromenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Hoolageri SR, Kamble RR, Nesaragi AR, Bheemayya L, Nadoni VB, Dixit S, Vootla S, Joshi SD. Cu (Ι) catalyzed A
3
cascade coupling via C‐H functionalization followed by cyclization: Synthesis, in silico, in vitro and toxicity studies of imidazo[2,1‐b]thiazoles. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Lokesh Bheemayya
- Department of Studies in Chemistry Karnatak University Dharwad India
| | - Vishwa B. Nadoni
- Department of Studies in Chemistry Karnatak University Dharwad India
| | - Shruti Dixit
- Department of Biotechnology and Microbiology Karnatak University Dharwad India
| | - Shyamkumar Vootla
- Department of Biotechnology and Microbiology Karnatak University Dharwad India
| | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T.’s College of Pharmacy Dharwad India
| |
Collapse
|