1
|
Yan J, Zhao C, Ma Y, Yang W. Covalently Attaching Hollow Silica Nanoparticles on a COC Surface for the Fabrication of a Three-Dimensional Protein Microarray. Biomacromolecules 2022; 23:2614-2623. [PMID: 35603741 DOI: 10.1021/acs.biomac.2c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compared to traditional two-dimensional (2D) biochips, three-dimensional (3D) biochips exhibit the advantages of higher probe density and detection sensitivity due to their designable surface microstructure as well as enlarged surface area. In the study, we proposed an approach to prepare a 3D protein chip by deposition of a monolayer of functionalized hollow silica nanoparticles (HSNs) on an activated cyclic olefin copolymer (COC) substrate. First, the COC substrate was chemically modified through the photografting technique to tether poly[3-(trimethoxysilyl) propyl methacrylate] (PTMSPMA) brushes on it. Then, a monolayer of HSNs was deposited on the modified COC and covalently attached via a condensation reaction between the hydrolyzed pendant siloxane groups of PTMSPMA and the Si-OH groups of HSNs. The roughness of the COC substrate significantly increased to 50.3 nm after depositing a monolayer of HSNs (ranging from 100 to 700 nm), while it only caused a negligible reduction in the light transmittance of COC. The HSN-modified COC was further functionalized with epoxide groups by a silane coupling agent for binding proteins. Immunoglobulin G could be effectively immobilized on this substrate with the highest immobilization efficiency of 75.2% and a maximum immobilization density of 1.236 μg/cm2, while the highest immobilization efficiency on a 2D epoxide group-modified glass slide was only 57.4%. Moreover, immunoassay results confirmed a competitive limit of detection (LOD) (1.06 ng/mL) and a linear detection range (1-100 ng/mL) of the 3D protein chip. This facile and effective approach for fabricating nanoparticle-based 3D protein microarrays has great potential in the field of biorelated detection.
Collapse
|
2
|
Zhang B, He J, Li J, Wang L, Li D. Microscale electrohydrodynamic printing of in situ reactive features for patterned ZnO nanorods. NANOTECHNOLOGY 2019; 30:475301. [PMID: 31437821 DOI: 10.1088/1361-6528/ab3db4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patterning of zinc oxide (ZnO) nanorods has attracted considerable interests to enhance the performance of ZnO-based functional devices. Most of the existing techniques for patterned ZnO nanorods are based on conventional microfabrication methods that commonly require cleanroom environment, high-cost equipment and complicated processes. In this study, electrohydrodynamic (EHD) printing strategy was accommodated to fabricate microscale ZnO nanorods patterns based on in situ reactive inks. Smaller working voltage and larger nozzle-to-collector distance facilitated the formation of thinner PEO-Zn(NO3)2 filaments, which were decomposed into ZnO nanoparticles to serve as the seeding template for the hydrothermal growth of ZnO nanorods. The resultant ZnO nanorods can be flexibly tuned by the EHD printed patterns. The effect of growth time on the size and morphology of ZnO nanorods was investigated. Compared with the spin-coating method, the photoelectrochemical property of patterned ZnO nanorods was well controlled and showed enhanced photoelectrochemical stability. The presented method provides a flexible and rapid way to customize patterned ZnO nanorods that can be potentially used in the fields of optical detectors, biosensors or solar-driven devices.
Collapse
Affiliation(s)
- Bing Zhang
- State key laboratory for manufacturing systems engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China. Rapid manufacturing research center of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
3
|
Wu CT, Soliman AIA, Utsunomiya T, Ichii T, Sugimura H. Formation of submicron-sized silica patterns on flexible polymer substrates based on vacuum ultraviolet photo-oxidation. RSC Adv 2019; 9:32313-32322. [PMID: 35530761 PMCID: PMC9072887 DOI: 10.1039/c9ra07256j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022] Open
Abstract
Formation of precise and high-resolution silica micropatterns on polymer substrates is of importance in surface structuring for flexible device fabrication of optics, microelectronic, and biotechnology. To achieve that, substrates modified with affinity-patterns serve as a strategy for site-selective deposition. In the present paper, vacuum ultraviolet (VUV) treatment is utilized to achieve spatially-controlled surface functionalization on a cyclo-olefin polymer (COP) substrate. An organosilane, 2,4,6,8-tetramethylcyclotetrasiloxane (TMCTS), preferentially deposits on the functionalized regions. Well-defined patterns of TMCTS are formed with a minimum feature of ∼500 nm. The secondary VUV/(O)-treatment converts TMCTS into SiO x , meanwhile etches the bare COP surface, forming patterned SiO x /COP microstructures with an average height of ∼150 nm. The resulting SiO x patterns retain a good copy of TMCTS patterns, which are also consistent with the patterns of photomask used in polymer affinity-patterning. The high quality SiO x patterns are of interests in microdevice fabrication, and the hydrophilicity contrast and adjustable heights reveal their potential application as a "stamp" for microcontact printing (μCP) techniques.
Collapse
Affiliation(s)
- Cheng-Tse Wu
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| | - Ahmed I A Soliman
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131.,Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| | - Takashi Ichii
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Kyoto 606-8501 Japan +81-75-753-9131
| |
Collapse
|
4
|
Blumenstein NJ, Streb F, Walheim S, Schimmel T, Burghard Z, Bill J. Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:296-303. [PMID: 28243568 PMCID: PMC5301953 DOI: 10.3762/bjnano.8.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/08/2017] [Indexed: 05/09/2023]
Abstract
Biomaterials are used as model systems for the deposition of functional inorganic materials under mild reaction conditions where organic templates direct the deposition process. In this study, this principle was adapted for the formation of piezoelectric ZnO thin films. The influence of two different organic templates (namely, a carboxylate-terminated self-assembled monolayer and a sulfonate-terminated polyelectrolyte multilayer) on the deposition and therefore on the piezoelectric performance was investigated. While the low negative charge of the COOH-SAM is not able to support oriented attachment of the particles, the strongly negatively charged sulfonated polyelectrolyte leads to texturing of the ZnO film. This texture enables a piezoelectric performance of the material which was measured by piezoresponse force microscopy. This study shows that it is possible to tune the piezoelectric properties of ZnO by applying templates with different functionalities.
Collapse
Affiliation(s)
- Nina J Blumenstein
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, Stuttgart, D-70569, Germany
| | - Fabian Streb
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, Stuttgart, D-70569, Germany
| | - Stefan Walheim
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, Karlsruhe, D-76131, Germany
| | - Thomas Schimmel
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
- Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, Karlsruhe, D-76131, Germany
| | - Zaklina Burghard
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, Stuttgart, D-70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstraße 3, Stuttgart, D-70569, Germany
| |
Collapse
|
5
|
Yan Y, Huang LB, Zhou Y, Han ST, Zhou L, Sun Q, Zhuang J, Peng H, Yan H, Roy VAL. Surface Decoration on Polymeric Gate Dielectrics for Flexible Organic Field-Effect Transistors via Hydroxylation and Subsequent Monolayer Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23464-23471. [PMID: 26439239 DOI: 10.1021/acsami.5b05363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A simple photochemical reaction based on confined photocatalytic oxidation (CPO) treatment and hydrolysis was employed to efficiently convert C-H bonds into C-OH groups on polymeric material surfaces, followed by investigation of monolayer self-assembly decoration on polymeric dielectrics via chemical bonding for the organic field-effect transistors (OFETs) applications. This method is a low temperature process and has negligible etching effect on polymeric dielectric layers. Various types of self-assembled monolayers have been tested and successfully attached onto the hydroxylated polymeric dielectric surfaces through chemical bonding, ensuring the stability of decorated functional films during the subsequent device fabrication consisting of solution processing of the polymer active layer. With the surface decoration of functional groups, both n-type and p-type polymers exhibit enhanced carrier mobilities in the unipolar OFETs. In addition, enhanced and balanced mobilities are obtained in the ambipolar OFETs with the blend of polymer semiconductors. The anchored self-assembled monolayers on the dielectric surfaces dramatically preclude the solvent effect, thus enabling an improvement of carrier mobility up to 2 orders of magnitude. Our study opens a way of targeted modifications of polymeric surfaces and related applications in organic electronics.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Long-Biao Huang
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University , Shenzhen, Guangdong 508060, People's Republic of China
| | - Su-Ting Han
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Li Zhou
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Qijun Sun
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Jiaqing Zhuang
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Haiyan Peng
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences , Guangzhou 511458, People's Republic of China
| | - He Yan
- Department of Chemistry, Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong
| | - V A L Roy
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong SAR
| |
Collapse
|
6
|
Mu X, Guo S, Zhang L, Yang P. Modification of indium tin oxide with persulfate-based photochemistry toward facile, rapid, and low-temperature interface-mediated multicomponent assembling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4945-4951. [PMID: 24716839 DOI: 10.1021/la5004963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The well-controlled material assembly and patterning on indium tin oxide (ITO) coating layer is of great importance for the practical fabrication of a functional device. Nonetheless, the conventional way to achieve this aim is still mainly based on the combination of photolithography with pattern transfer techniques (e.g., wet/dry etching, μCP) due to the lack of one method that is able to directly afford site-selective ITO surface tailoring and subsequent templating for material assembly. Herein, we reported a novel, fast, and efficient photochemical reaction to accurately tailor the surface property of ITO with light-controlled site-selectivity, thus resulting in direct photoresist-free and etching/contact-free lithographic patterning of building blocks, e.g., ZnO, BaTiO3, CdS, lipid membrane, conductive polymers, colloids, and liquid crystals. The entire process reveals new interfacial chemistry suitable for inorganic metal oxide and its important versatile implications for low-cost fabrication of large-area flat and flexible optical/electronic/biorelated devices.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xìan, 710119 China
| | | | | | | |
Collapse
|
7
|
Yang P, Yang W. Hydroxylation of organic polymer surface: method and application. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3759-70. [PMID: 24564629 DOI: 10.1021/am405857m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It may be hardly believable that inert C-H bonds on a polymeric material surface could be quickly and efficiently transformed into C-OH by a simple and mild way. Thanks to the approaches developed recently, it is now possible to transform surface H atoms of a polymeric substrate into monolayer OH groups by a simple/mild photochemical reaction. Herein the method and application of this small-molecular interfacial chemistry is highlighted. The existence of hydroxyl groups on material surfaces not only determines the physical and chemical properties of materials but also provides effective reaction sites for postsynthetic sequential modification to fulfill the requirements of various applications. However, organic synthetic materials based on petroleum, especially polyolefins comprise mainly C and H atoms and thus present serious surface problems due to low surface energy and inertness in reactivity. These limitations make it challenging to perform postsynthetic surface sequential chemical derivatization toward enhanced functionalities and properties and also cause serious interfacial problems when bonding or integrating polymer substrates with natural or inorganic materials. Polymer surface hydroxylation based on direct conversion of C-H bonds on polymer surfaces is thus of significant importance for academic and practical industrial applications. Although highly active research results have reported on small-molecular C-H bond activation in solution (thus homogeneous), most of them, featuring the use of a variety of transition metals as catalysts, present a slow reaction rate, a low atom economy and an obvious environmental pollution. In sharp contrast to these conventional C-H activation strategies, the present Spotlight describes a universal confined photocatalytic oxidation (CPO) system that is able to directly convert polymer surface C-H bonds to C-OSO3(-) and, subsequently, to C-OH through a simple hydrolysis. Generally speaking, these newly implanted hydroxyl groups preserve their own reactivity toward other complementary compounds, thus creating a novel base with distinct surface properties. Thanks to this functionalized platform, a wide range of organic, inorganic and metal materials have been attached to conventional organic polymer substrates through the rational engineering of surface molecular templates from small functional groups to macromolecules. It is expected that the proposed novel CPO method and its versatile usages in advanced material applications will offer new opportunities for a variety of scientific communities, especially for those working on surface/interface modulation.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, China
| | | |
Collapse
|
8
|
Yang P, Yang W. Surface Chemoselective Phototransformation of C–H Bonds on Organic Polymeric Materials and Related High-Tech Applications. Chem Rev 2013; 113:5547-94. [PMID: 23614481 DOI: 10.1021/cr300246p] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Yang
- Key Laboratory
of Applied Surface
and Colloid Chemistry, Ministry of Education, College of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wantai Yang
- The State Key Laboratory of
Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| |
Collapse
|
9
|
Correlation of SiO x layer thickness and properties of BOPP/SiO x composite films with spin coating process parameters. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1224-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Tang J, Du L, Pang WH, Zheng JJ, Tian XC, Zhuang JL. Hydrothermal Synthesis and Field Enhancement Behavior of ZnO Nanorods Pattern. CHINESE J CHEM PHYS 2011. [DOI: 10.1088/1674-0068/24/06/753-758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Lee W, Dasgupta NP, Trejo O, Lee JR, Hwang J, Usui T, Prinz FB. Area-selective atomic layer deposition of lead sulfide: nanoscale patterning and DFT simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6845-6852. [PMID: 20099790 DOI: 10.1021/la904122e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Area-selective atomic layer deposition (ALD) of lead sulfide (PbS) was achieved on octadecyltrichlorosilane (ODTS)-patterned silicon substrates. We investigated the capability of ODTS self-assembled monolayers (SAMs) to deactivate the ALD PbS surface reactions as a function of dipping time in ODTS solution. The reaction mechanism was investigated using density functional theory (DFT), which showed that the initial ALD half-reaction is energetically unfavorable on a methyl-terminated SAM surface. Conventional photolithography was used to create oxide patterns on which ODTS SAMs were selectively grown. Consequently, PbS thin films were grown selectively only where ODTS was not present, whereas deposition was blocked in regions where ODTS was grown. The resulting fabricated patterns were characterized by scanning electron microscopy and Auger electron spectroscopy, which demonstrated that ALD PbS was well confined to defined patterns with high selectivity by ODTS SAMs. In addition, AFM lithography was employed to create nanoscale PbS patterns. Our results show that this method can be applied to various device-fabrication processes, presenting new opportunities for various nanofabrication schemes and manifesting the benefits of self-assembly.
Collapse
Affiliation(s)
- Wonyoung Lee
- Department of Mechanical Engineering, Stanford University, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Gan S, Yang P, Yang W. Interface-directed sol-gel: direct fabrication of the covalently attached ultraflat inorganic oxide pattern on functionalized plastics. Sci China Chem 2010. [DOI: 10.1007/s11426-010-0022-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Gan S, Yang P, Yang W. Photoactivation of alkyl C-H and silanization: a simple and general route to prepare high-density primary amines on inert polymer surfaces for protein immobilization. Biomacromolecules 2009; 10:1238-43. [PMID: 19317482 DOI: 10.1021/bm900011h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface modification through implanting functional groups has been demonstrated to be extremely important to biomedical applications. The usage of organic polymer phase is often required to achieve satisfactory results. However, organic surfaces usually have poor chemical reactivity toward other reactants and target biomolecules because these surfaces usually only consist of simple alkyl (C-H) and/or alkyl ether (ROR') structures. For the first time, we here report the potential to perform silanization techniques on alkyl polymer surface, which provide a simple, fast, inexpensive, and general method to decorate versatile functional groups at the molecular level. As an example, high-density primary amines could be obtained on a model polymer, polypropylene substrate, through the reaction between amine-capped silane, 3-aminopropyltriethoxysilane (APTES) and hydroxylated polypropylene surface. A model protein, immunoglobulin (IgG), could be effectively immobilized on the surface after transforming amines to aldehydes by the aldehyde-amine condensation reaction between glutaraldehyde (GA) and amines. The routes we report here could directly make use of the benefits from well-developed silane chemistry, and hereby are capable of grafting any functionalities on inert alkyl surfaces via changing the terminal groups in silanes, which should instantly stimulate the development of many realms such as microarrays, immunoassays, biosensors, filtrations, and microseparation.
Collapse
Affiliation(s)
- Shenghua Gan
- The State Key Laboratory of Chemical Resource Engineering, Beijing, 100029, China
| | | | | |
Collapse
|
14
|
Zou S, Bai H, Yang P, Yang W. A Biomimetic Chemical Approach to Facile Preparation of Large-Area, Patterned, ZnO Quantum Dot/Polymer Nanocomposites on Flexible Plastics. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200900100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|