1
|
Li Y, Han X, Mu X, Wang Y, Shi C, Ma C. Single-walled carbon nanotubes-based RNA protection and extraction improves RT-qPCR sensitivity for SARS-CoV-2 detection. Anal Chim Acta 2023; 1238:340639. [PMID: 36464451 PMCID: PMC9674634 DOI: 10.1016/j.aca.2022.340639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
The false-negative result of nucleic acid testing is an important cause of continued spread of COVID-19, while SARS-CoV-2 RNA degradation during transportation and nucleic acid extraction can lead to false-negative results. Here, we investigated that single-walled carbon nanotubes (SCNTs) could protect RNA from degradation for at least 4 days at room temperature. By constructing magnetism-functionalized SCNTs (MSCNTs), we developed a method that enabled protection and simple extraction of SARS-CoV-2 RNA, and the RNA-bound MSCNTs can be directly used for reverse transcription polymerase chain reaction (RT-qPCR) detection. The experimental results showed that 1 μg of MSCNTs adsorbed up to 24 ng of RNA. Notably, the MSCNTs-based method for extracting SARS-CoV-2 RNA from simulated nasopharyngeal swabs and saliva samples with mean recovery rates of 103% and 106% improved the sensitivity of RT-qPCR detection by 8-32 fold in comparison to current common methods. This improvement was largely attributable to the protection of RNA, enabling increased RNA load for downstream assays.
Collapse
Affiliation(s)
- Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Xiangning Han
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 266042, Qingdao, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 266042, Qingdao, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, 266071, Qingdao, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China.
| |
Collapse
|
2
|
Karachevtsev MV, Stepanian SG, Valeev VA, Lytvyn OS, Adamowicz L, Karachevtsev VA. Adsorption of Polyadenylic acid on graphene oxide: experiments and computer modeling. J Biomol Struct Dyn 2020; 40:425-437. [PMID: 32897172 DOI: 10.1080/07391102.2020.1814869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this work, we study the adsorption of poly(rA) on graphene oxide (GO) using AFM and UV absorption spectroscopies. A transformation of the homopolynucleotide structure on the GO surface is observed. It is found that an energetically favorable conformation of poly(rA) on GO is achieved after a considerable amount of time (days). It is revealed that GO can induce formation of self-structures of single-stranded poly(rA) including a duplex at pH 7. The phenomenon is analyzed by polymer melting measurements and observed by AFM. Details of the noncovalent interaction of poly(rA) with graphene are also investigated using molecular dynamics simulations. The adsorption of (rA)10 oligonucleotide on graphene is compared with the graphene adsorption of (rC)10. DFT calculations are used to determine equilibrium structures and the corresponding interaction energies of the adenine-GO complexes with different numbers of the oxygen-containing groups. The IR intensities and vibrational frequencies of free and adsorbed adenines on the GO surface are calculated. The obtained spectral transformations are caused by the interaction of adenine with GO.
Collapse
Affiliation(s)
- Maksym V Karachevtsev
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Stepan G Stepanian
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Vladimir A Valeev
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Oksana S Lytvyn
- V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine Kyiv, Borys Grinchenko Kyiv University, Kyiv, Ukraine
| | - Ludwik Adamowicz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.,Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, PL, Poland
| | - Victor A Karachevtsev
- B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
3
|
Ghosn Y, Kamareddine MH, Tawk A, Elia C, El Mahmoud A, Terro K, El Harake N, El-Baba B, Makdessi J, Farhat S. Inorganic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myelogenous Leukaemia. Technol Cancer Res Treat 2019; 18:1533033819853241. [PMID: 31138064 PMCID: PMC6542119 DOI: 10.1177/1533033819853241] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative disease where cells of myeloid linage display a t(9;22) chromosomal translocation leading to the formation of the BCR/ABL fusion gene and the continuous activation of tyrosine kinases. This malignancy has a peak incidence at 45 to 85 years, accounting for 15% of all leukemias in adults. Controlling the activity of tyrosine kinase became the main strategy in chronic myeloid leukemia treatment, with imatinib being placed at the forefront of current treatment protocols. New approaches in future anticancer therapy are emerging with nanomedicine being gradually implemented. Setting through a thorough survey of published literature, this review discusses the use of inorganic nanoparticles in chronic myeloid leukemia therapy. After an introduction on the basics of chronic myeloid leukemia, a description of the current treatment modalities of chronic myeloid leukemia and drug-resistance mechanisms is presented. This is followed by a general view on the applications of nanostrategies in medicine and then a detailed breakdown of inorganic nanocarriers and their uses in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Youssef Ghosn
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | | | - Antonios Tawk
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- 2 Faculty of Engineering, Chemical Engineering, University of Balamand, El-Koura, Lebanon
| | - Ahmad El Mahmoud
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Khodor Terro
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Nadia El Harake
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Bachar El-Baba
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- 3 Department of Hematology - Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- 4 Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
4
|
Li X, Zhou KF, Tong ZB, Yang XY, Chen CY, Shang XH, Sha JQ. Heightened Integration of POM-based Metal-Organic Frameworks with Functionalized Single-Walled Carbon Nanotubes for Superior Energy Storage. Chem Asian J 2019; 14:3424-3430. [PMID: 31502402 DOI: 10.1002/asia.201901143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/06/2019] [Indexed: 11/08/2022]
Abstract
To increase the conductivity of polyoxometalate-based metal-organic frameworks (POMOFs) and promote their applications in the field of energy storage, herein, a simple approach was employed to improve their overall electrochemical performances by introducing a functionalized single-walled carbon nanotubes (SWNT-COOH). A new POMOF compound, [Cu18 (trz)12 Cl3 (H2 O)2 ][PW12 O40 ] (CuPW), was successfully synthesized, then the size-matched functionalized SWNT-COOH was introduced to fabricate CuPW/SWNT-COOH composite (PMNT-COOH) by employing a simple sonication-driven periodic functionalization strategy. When the PMNT-COOH nanocomposite was used as the anode material for Lithium-ion batteries (LIBs), PMNT-COOH(3) (CuPWNC:SWNT-COOH=3:1) showed superior behavior of energy storage, a high reversible capacity of 885 mA h g-1 up to a cycle life of 170 cycles. The electrochemical results indicate that the uniform packing of SWNT-COOH provided a favored contact between the electrolyte and the electrode, resulting in enhanced specific capacity during lithium insertion/extraction process. This fabrication of PMNT-COOH nanocomposite opens new avenues for the design and synthesis of new generation electrode materials for LIBs.
Collapse
Affiliation(s)
- Xiao Li
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, China
| | - Kun-Feng Zhou
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, China
| | - Zhi-Bo Tong
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, China
| | - Xi-Ya Yang
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, China
| | - Cui-Ying Chen
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, China
| | - Xue-Hui Shang
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, China
| | - Jing-Quan Sha
- The Talent Culturing Plan for Leading Disciplines of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong, 273155, China
| |
Collapse
|
5
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Structural transitions in poly(A), poly(C), poly(U), and poly(G) and their possible biological roles. J Biomol Struct Dyn 2018; 37:2837-2866. [PMID: 30052138 DOI: 10.1080/07391102.2018.1503972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation. This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Iryna M Kolomiets
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy L Potyahaylo
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv , Ukraine
| |
Collapse
|
6
|
Srivastava S, Fukuto M, Gang O. Liquid interfaces with pH-switchable nanoparticle arrays. SOFT MATTER 2018; 14:3929-3934. [PMID: 29736540 DOI: 10.1039/c8sm00583d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive 2D nanoscale systems offer intriguing opportunities for creating switchable interfaces. At liquid interfaces, such systems can provide control over interfacial energies, surface structure, and rheological and transport characteristics, which is relevant, for example, to bio- and chemical reactors, microfluidic devices, and soft robotics. Here, we explore the formation of a pH-responsive membrane formed from gold nanoparticles grafted with DNA (DNA-NPs) at a liquid-vapor interface. A DNA-NP 2D hexagonal lattice can be reversibly switched by pH modulation between an expanded state of non-connected nanoparticles at neutral pH and a contracted state of linked nanoparticles at acidic pH due to the AH+-H+A base pairing between A-motifs. Our in situ surface X-ray scattering studies reveal that the reversible lattice contraction can be tuned by the length of pH-activated linkers, with up to ∼71% change in surface area.
Collapse
Affiliation(s)
- Sunita Srivastava
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | | | |
Collapse
|
7
|
Chatterjee S, Suresh Kumar G. Small molecule induced poly(A) single strand to self-structure conformational switching: evidence for the prominent role of H-bonding interactions. MOLECULAR BIOSYSTEMS 2018; 13:1000-1009. [PMID: 28405661 DOI: 10.1039/c7mb00031f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
All messenger RNAs (mRNAs) have a polyadenylic acid tail that is added during post transcriptional RNA processing. Investigation of the structure-function and interactions of polyadenylic acid is an important area to target for cancer and related diseases. Jatrorrhizine and coptisine are two important isoquinoline alkaloids that are structurally very similar, differing only in the substituents on the isoquinoline chromophore. Here we demonstrate that these alkaloids differentially induce a self-structure in single stranded poly(A) using absorbance, thermal melting and differential scanning calorimetry experiments. Jatrorrhizine was found to be more effective than coptisine in binding to poly(A) from spectroscopy and calorimetry data. Molecular modeling results suggested the involvement of more H-bonds in the complexation of the former with poly(A). It appears that the presence of substituents on the alkaloid that can form H-bonding interactions with the adenine nucleotides may play a critical role in the binding and structural rearrangement of poly(A) into the self-structure. The atomic force microscopy data directly visualized the poly(A) self-structured network. We propose a plausible mechanism of the small molecule induced self-structure formation in poly(A). The results presented here may help in the design of effective poly(A) targeted molecules for therapeutic use.
Collapse
Affiliation(s)
- Sabyasachi Chatterjee
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
8
|
Gleghorn ML, Zhao J, Turner DH, Maquat LE. Crystal structure of a poly(rA) staggered zipper at acidic pH: evidence that adenine N1 protonation mediates parallel double helix formation. Nucleic Acids Res 2016; 44:8417-24. [PMID: 27288442 PMCID: PMC5041459 DOI: 10.1093/nar/gkw526] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
We have solved at 1.07 Å resolution the X-ray crystal structure of a polyriboadenylic acid (poly(rA)) parallel and continuous double helix. Fifty-nine years ago, double helices of poly(rA) were first proposed to form at acidic pH. Here, we show that 7-mer oligo(rA), i.e. rA7, hybridizes and overlaps in all registers at pH 3.5 to form stacked double helices that span the crystal. Under these conditions, rA7 forms well-ordered crystals, whereas rA6 forms fragile crystalline-like structures, and rA5, rA8 and rA11 fail to crystallize. Our findings support studies from ∼50 years ago: one showed using spectroscopic methods that duplex formation at pH 4.5 largely starts with rA7 and begins to plateau with rA8; another proposed a so-called ‘staggered zipper’ model in which oligo(rA) strands overlap in multiple registers to extend the helical duplex. While never shown, protonation of adenines at position N1 has been hypothesized to be critical for helix formation. Bond angles in our structure suggest that N1 is protonated on the adenines of every other rAMP−rAMP helix base pair. Our data offer new insights into poly(rA) duplex formation that may be useful in developing a pH sensor.
Collapse
Affiliation(s)
- Michael L Gleghorn
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Jianbo Zhao
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Roviello GN, Musumeci D, Roviello V, Pirtskhalava M, Egoyan A, Mirtskhulava M. Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1338-1347. [PMID: 26199837 PMCID: PMC4505092 DOI: 10.3762/bjnano.6.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 06/10/2023]
Abstract
The employment of molecular tools with nucleic acid binding ability to specifically control crucial cellular functions represents an important scientific area at the border between biochemistry and pharmaceutical chemistry. In this review we describe several molecular systems of natural or artificial origin, which are able to bind polyriboadenylic acid (poly(rA)) both in its single-stranded or structured forms. Due to the fundamental role played by the poly(rA) tail in the maturation and stability of mRNA, as well as in the initiation of the translation process, compounds able to bind this RNA tract, influencing the mRNA fate, are of special interest for developing innovative biomedical strategies mainly in the field of anticancer therapy.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Domenica Musumeci
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Valentina Roviello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMaPI), Università di Napoli “Federico II”, 80125 Napoli, Italy
| | | | | | | |
Collapse
|
10
|
Moradi O, Sadegh H, Shahryari-Ghoshekandi R, Norouzi M. Application of Carbon Nanotubes in Nanomedicine. HANDBOOK OF RESEARCH ON DIVERSE APPLICATIONS OF NANOTECHNOLOGY IN BIOMEDICINE, CHEMISTRY, AND ENGINEERING 2015. [DOI: 10.4018/978-1-4666-6363-3.ch006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carbon Nanotubes (CNTs) have become a technological field with great potential since they can be applied in almost every aspect of modern life. One of the sectors where CNTs are expected to play a vital role is the field of medical science. This chapter focuses on the latest developments in applications of CNTs for nanomedicine. A brief history of CNTs and a general introduction to the field are presented. Then, the preparation of CNTs that makes them ideal for use in medical applications is highlighted. Examples of common applications, including cell penetration, drug delivery, and gene delivery and imaging are given. Finally, the toxicity of carbon nanotubes is discussed.
Collapse
|
11
|
Feng L, Zhao A, Ren J, Qu X. Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res 2013; 41:7987-96. [PMID: 23814186 PMCID: PMC3763558 DOI: 10.1093/nar/gkt575] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Left-handed Z-DNA has been identified as a transient structure occurred during transcription. DNA B-Z transition has attracted much attention because of not only Z-DNA biological importance but also their relation to disease and DNA nanotechnology. Recently, photoluminescent carbon dots, especially highly luminescent nitrogen-doped carbon dots, have attracted much attention on their applications to bioimaging and gene/drug delivery because of carbon dots with low toxicity, highly stable photoluminescence and controllable surface function. However, it is still unknown whether carbon dots can influence DNA conformation or structural transition, such as B-Z transition. Herein, based on our previous series work on DNA interactions with carbon nanotubes, we report the first example that photoluminescent carbon dots can induce right-handed B-DNA to left-handed Z-DNA under physiological salt conditions with sequence and conformation selectivity. Further studies indicate that carbon dots would bind to DNA major groove with GC preference. Inspired by carbon dots lighting up Z-DNA and DNA nanotechnology, several types of DNA logic gates have been designed and constructed based on fluorescence resonance energy transfer between photoluminescent carbon dots and DNA intercalators.
Collapse
Affiliation(s)
- Lingyan Feng
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China and Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | | | | | | |
Collapse
|
12
|
Yang J, Zou L, Choudhury NR. Ion-selective carbon nanotube electrodes in capacitive deionisation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.12.089] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Study of DNA base-Li doped SiC nanotubes in aqueous solutions: a computer simulation study. J Mol Model 2013; 19:1605-15. [DOI: 10.1007/s00894-012-1721-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/03/2012] [Indexed: 12/07/2022]
|
14
|
Apartsin EK, Buyanova MY, Novopashina DS, Ryabchikova EI, Venyaminova AG. Non-Covalent Immobilization of Oligonucleotides on Single-Walled Carbon Nanotubes. SPRINGER PROCEEDINGS IN PHYSICS 2013. [DOI: 10.1007/978-1-4614-7675-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat Commun 2012; 3:1074. [DOI: 10.1038/ncomms2091] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/24/2012] [Indexed: 02/06/2023] Open
|
16
|
Apartsin EK, Novopashina DS, Nastaushev YV, Ven’yaminova AG. Fluorescently labeled single-walled carbon nanotubes and their hybrids with oligonucleotides. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s1995078012020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kim S, Choi J, Majima T. Self-assembly of polydeoxyadenylic acid studied at the single-molecule level. J Phys Chem B 2011; 115:15399-405. [PMID: 22085264 DOI: 10.1021/jp208911t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The investigation on the self-assembly of polydeoxyadenylic acid (poly(dA)) is highly important to fully understand its biological function and for its application in the field of nanotechnology. Using the fluorescence resonance energy transfer (FRET) technique, we report investigations for the self-assembly of adenine oligomers induced by pH and coralyne binding at the single-molecule level and in the bulk phase. Results presented here show that A-motif 1 (Alexa488-5'-(dA)(20)-3'-Cy5-5'-(dA)(20)-3'-Alexa488) forms the wire-type duplex at acidic pH, whereas the same conformation of A-motif 2 (Alexa488-5'-(dA)(20)-3'-Cy5-3'-(dA)(20)-5'-Alexa488) is induced by coralyne binding at neutral pH. These results indicate that poly(dA) at acidic pH forms a right-handed helical duplex with parallel-mannered chains, whereas the coralyne-poly(dA) binding induces a stable antiparallel duplex. Furthermore, we found that the antiparallel duplex of poly(dA) formed by coralyne binding has a rather extended and less twisted structure as compared to the parallel duplex of poly(dA) formed at acidic pH. On the other hand, from dilution experiments, we found that the parallel duplex formed at acidic pH is converted to "S-form", which has the single-stranded structure with short intramolecular double-stranded regions formed by intramolecular A:A base pairing, while the A-motif-coralyne assembly is dissociated into single strands below a certain concentration. The formation of S-form with a short intramolecular double-stranded region formed at acidic pH and very low concentration is confirmed by the quantitative analysis of FCS curve to measure the hydrodynamic radius of a molecule.
Collapse
Affiliation(s)
- Sooyeon Kim
- The Institute of Scientific and Industrial (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
18
|
Song Y, Feng L, Ren J, Qu X. Stabilization of unstable CGC+ triplex DNA by single-walled carbon nanotubes under physiological conditions. Nucleic Acids Res 2011; 39:6835-43. [PMID: 21576218 PMCID: PMC3159473 DOI: 10.1093/nar/gkr322] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Triplex formation is a promising strategy for realizing artificially controlling of gene expression, reversible assembly of nanomaterials and DNA nanomachine and single-walled nanotubes (SWNTs) have been widely used as gene and drug delivery vector or as 'building blocks' in nano-/microelectronic devices. CGC(+) triplex is not as stable as TAT triplex. The poor stability of CGC(+) triplex limits its use in vitro and in vivo. There is no ligand that has been reported to selectively stabilize CGC(+) triplets rather than TAT. Here, we report that SWNTs can cause d(CT) • d(AG) duplex disproportionation into triplex d(C(+)T) • d(AG) • d(CT) and single-strand d(AG) under physiological conditions. SWNTs can reduce the stringency of conditions for CGC(+) triplex formation studied by UV-vis, CD, DNA melting, light scattering and atomic force microscopy. Further studies indicate that electrostatic interaction is crucial for d(CT) • d(AG) repartition into triplex d(C(+)T) • d(AG) • d(CT). Our findings may facilitate utilization of SWNTs-DNA complex in artificially controlling of gene expression, nanomaterials assembly and biosensing.
Collapse
Affiliation(s)
- Yujun Song
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | | | | | | |
Collapse
|
19
|
Singh P, Toma FM, Kumar J, Venkatesh V, Raya J, Prato M, Verma S, Bianco A. Carbon Nanotube-Nucleobase Hybrids: Nanorings from Uracil-Modified Single-Walled Carbon Nanotubes. Chemistry 2011; 17:6772-80. [DOI: 10.1002/chem.201100312] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Indexed: 11/11/2022]
|
20
|
Zhao C, Qu K, Ren J, Qu X. Proton-Fueled DNA-Duplex-Based Stimuli-Responsive Reversible Assembly of Single-Walled Carbon Nanotubes. Chemistry 2011; 17:7013-9. [DOI: 10.1002/chem.201100202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 11/09/2022]
|
21
|
Zhao C, Qu K, Xu C, Ren J, Qu X. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures. Nucleic Acids Res 2011; 39:3939-48. [PMID: 21227925 PMCID: PMC3089474 DOI: 10.1093/nar/gkq1347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a promising strategy for artificially control of gene expression, reversible assembly of nanomaterials and DNA nanomachine, DNA triplex formation has received much attention. Carbon nanotubes as gene and drug delivery vector or as ‘building blocks’ in nano/microelectronic devices have been successfully explored. Therefore, studies on triplex DNA-based carbon nanotube hybrid materials are important for development of smart nanomaterials and for gene therapy. In this report, a small molecule directed single-walled carbon nanotubes (SWNTs) self-assembly assay has been developed by disproportionation of SWNTs–dT22·dA22 duplex into triplex dT22·dA22·dT22 and dA22 by a triplex formation inducer, coralyne. This has been studied by circular dichroism, light scattering (LS) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), electrophoretic mobility shift assay and supported by using DNA random sequence. In contrast, SWNTs do not aggregate under the same experimental conditions when the small molecules used can not induce dT22·dA22·dT22 triplex formation. Therefore, this novel small molecule-directed SWNTs self-assembly assay has also been used for screening of triplex inducers in our studies.
Collapse
Affiliation(s)
- Chao Zhao
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|
22
|
Islam MM, Basu A, Suresh Kumar G. Binding of 9-O-(ω-amino) alkyl ether analogues of the plant alkaloid berberine to poly(A): insights into self-structure induction. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00209g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chemistry 2010; 16:3617-21. [PMID: 20191629 DOI: 10.1002/chem.200902643] [Citation(s) in RCA: 381] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yujun Song
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, Graduate School of the Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | | | |
Collapse
|
24
|
Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X. A Reusable DNA Single-Walled Carbon-Nanotube-Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Ag+and Cysteine in Aqueous Solutions. Chemistry 2010; 16:8147-54. [DOI: 10.1002/chem.201000306] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2206-10. [PMID: 20564257 DOI: 10.1002/adma.200903783] [Citation(s) in RCA: 1333] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Yujun Song
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | |
Collapse
|
26
|
Cheung W, Pontoriero F, Taratula O, Chen AM, He H. DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev 2010; 62:633-49. [PMID: 20338203 DOI: 10.1016/j.addr.2010.03.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/03/2010] [Indexed: 12/25/2022]
Abstract
The identification of disease-related genes and their complete nucleotide sequence through the human genome project provides us with a remarkable opportunity to combat a large number of diseases with designed genes as medicine. However, gene therapy relies on the efficient and nontoxic transport of therapeutic genetic medicine through the cell membranes, and this process is very inefficient. Carbon nanotubes, due to their large surface areas, unique surface properties, and needle-like shape, can deliver a large amount of therapeutic agents, including DNA and siRNAs, to the target disease sites. In addition, due to their unparalleled optical and electrical properties, carbon nanotubes can deliver DNA/siRNA not only into cells, which include difficult transfecting primary-immune cells and bacteria, they can also lead to controlled release of DNA/siRNA for targeted gene therapy. Furthermore, due to their wire shaped structure with a diameter matching with that of DNA/siRNA and their remarkable flexibility, carbon nanotubes can impact on the conformational structure and the transient conformational change of DNA/RNA, which can further enhance the therapeutic effects of DNA/siRNA. Synergistic combination of the multiple capabilities of carbon nanotubes to deliver DNA/siRNAs will lead to the development of powerful multifunctional nanomedicine to treat cancer or other difficult diseases. In this review, we summarized the current studies in using CNT as unique vehicles in the field of gene therapy.
Collapse
|
27
|
Li R, Wu R, Zhao L, Wu M, Yang L, Zou H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS NANO 2010; 4:1399-1408. [PMID: 20148593 DOI: 10.1021/nn9011225] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Multidrug resistance (MDR), which is related to cancer chemotherapy, tumor stem cells, and tumor metastasis, is a huge obstacle for the effective cancer therapy. One of the underlying mechanisms of MDR is the increased efflux of anticancer drugs by overexpressed P-glycoprotein (P-gp) of multidrug resistant cells. In this work, the antibody of P-gp (anti-P-gp) functionalized water-soluble single-walled carbon nanotubes (Ap-SWNTs) loaded with doxorubicin (Dox), Dox/Ap-SWNTs, were synthesized for challenging the MDR of K562 human leukemia cells. The resulting Ap-SWNTs could not only specifically recognize the multidrug resistant human leukemia cells (K562R), but also demonstrate the effective loading and controllable release performance for Dox toward the target K562R cells by exposing to near-infrared radiation (NIR). The recognition capability of Ap-SWNTs toward the K562R cells was confirmed by flow cytometry (FCM) and confocal laser scanning microscopy (CLSM). The binding affinity of Ap-SWNTs toward drug-resistant K562R cells was ca. 23-fold higher than that toward drug-sensitive K562S cells. Additionally, CLSM indicated that Ap-SWNTs could specifically localize on the cell membrane of K562R cells and the fluorescence of Dox in K562R cells could be significantly enhanced after the employment of Ap-SWNTs as carrier. Moreover, the composite of Dox and Ap-SWNTs (Dox/Ap-SWNTs) expressed 2.4-fold higher cytotoxicity and showed the significant cell proliferation suppression toward K562R leukemia cells (p < 0.05) as compared with free Dox which is popularly employed in clinic trials. These results suggest that the Ap-SWNTs are the promising drug delivery vehicle for overcoming the MDR induced by the overexpression of P-gp on cell membrane. Ap-SWNTs loaded with drug molecules could be used to suppress the proliferation of multidrug resistant cells, destroy the tumor stem cells, and inhibit the metastasis of tumor.
Collapse
Affiliation(s)
- Ruibin Li
- National Chromatographic R&A Center, CAS Key Laboratory of Separation Sciences for Analytical Chemistry,Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | | | | | | | | | | |
Collapse
|
28
|
Song G, Ren J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem Commun (Camb) 2010; 46:7283-94. [DOI: 10.1039/c0cc01312a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Wang X, Song Y, Ren J, Qu X. Knocking-down cyclin A(2) by siRNA suppresses apoptosis and switches differentiation pathways in K562 cells upon administration with doxorubicin. PLoS One 2009; 4:e6665. [PMID: 19684852 PMCID: PMC2721982 DOI: 10.1371/journal.pone.0006665] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/07/2009] [Indexed: 11/23/2022] Open
Abstract
Cyclin A2 is critical for the initiation of DNA replication, transcription and cell cycle regulation. Cumulative evidences indicate that the deregulation of cyclin A2 is tightly linked to the chromosomal instability, neoplastic transformation and tumor proliferation. Here we report that treatment of chronic myelogenous leukaemia K562 cells with doxorubicin results in an accumulation of cyclin A2 and follows by induction of apoptotic cell death. To investigate the potential preclinical relevance, K562 cells were transiently transfected with the siRNA targeting cyclin A2 by functionalized single wall carbon nanotubes. Knocking down the expression of cyclin A2 in K562 cells suppressed doxorubicin-induced growth arrest and cell apoptosis. Upon administration with doxorubicin, K562 cells with reduced cyclin A2 showed a significant decrease in erythroid differentiation, and a small fraction of cells were differentiated along megakaryocytic and monocyte-macrophage pathways. The results demonstrate the pro-apoptotic role of cyclin A2 and suggest that cyclin A2 is a key regulator of cell differentiation. To the best of our knowledge, this is the first report that knocking down expression of one gene switches differentiation pathways of human myeloid leukemia K562 cells.
Collapse
Affiliation(s)
- Xiaohui Wang
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Yujun Song
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jinsong Ren
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaogang Qu
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
30
|
Singh P, Kumar J, Toma FM, Raya J, Prato M, Fabre B, Verma S, Bianco A. Synthesis and Characterization of Nucleobase−Carbon Nanotube Hybrids. J Am Chem Soc 2009; 131:13555-62. [DOI: 10.1021/ja905041b] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prabhpreet Singh
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| | - Jitendra Kumar
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| | - Francesca Maria Toma
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| | - Jesus Raya
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| | - Maurizio Prato
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| | - Bruno Fabre
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| | - Sandeep Verma
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 67000 Strasbourg, France, Department of Chemistry, Indian Institute of Technology, Kanpur-208016 UP, India, Dipartimento di Scienze Farmaceutiche, Università di Trieste, 34127 Trieste, Italy, SISSA, Via Beirut 2−4, 34151 Trieste, Italy, Laboratoire de RMN et de biophysique des membranes, Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 67000 Strasbourg, France, Matière Condensée et
| |
Collapse
|