1
|
Sun P, Leidner A, Weigel S, Weidler PG, Heissler S, Scharnweber T, Niemeyer CM. Biopebble Containers: DNA-Directed Surface Assembly of Mesoporous Silica Nanoparticles for Cell Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900083. [PMID: 30985076 DOI: 10.1002/smll.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The development of methods for colloidal self-assembly on solid surfaces is important for many applications in biomedical sciences. Toward this goal, described is a versatile class of mesoporous silica nanoparticles (MSN) that contain on their surface various types of DNA molecules to enable their self-assembly into micropatterned surface architectures useful for cell studies. Monodisperse dye-doped MSN are synthesized by biphase stratification and functionalized with an aptamer oligonucleotide that serves as gatekeeper for the triggered release of encapsulated molecular cargo, such as fluorescent dye rhodamine B or the anticancer drug doxorubicin. One or two additional types of oligonucleotides are installed on the MSN surface to enable DNA-directed immobilization on solid substrates bearing patterns of complementary capture oligonucleotides. It is demonstrated that this strategy can be used for efficient self-assembly of microstructured surface architectures, which not only promote the adhesion and guidance of cells but also are capable of affecting the fate of adhered cells through triggered release of their cargo. It is believed that this approach is useful for diverse applications in tissue engineering and nanobio sciences.
Collapse
Affiliation(s)
- Pengchao Sun
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Arnold Leidner
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
- BASF SE, Dispersions & Colloidal Materials - B001, Carl-Bosch-Straße 38, 67056, Ludwigshafen, Germany
| | - Simone Weigel
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Peter G Weidler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Heissler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Tim Scharnweber
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz, D-76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Subramani C, Saha K, Creran B, Bajaj A, Moyano DF, Wang H, Rotello VM. Cell alignment using patterned biocompatible gold nanoparticle templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1209-13, 1126. [PMID: 22354857 PMCID: PMC3605712 DOI: 10.1002/smll.201102405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Indexed: 05/22/2023]
Abstract
Biocompatible structures are produced for cellular patterning. The biocompatible surfaces are generated to provide protein nonfouling patterns, offering direct communication to the cells for controlling cell adhesion and proliferation. These biofunctional surfaces provide a platform for aligning the cells in the direction of patterns, indicating potential application in the field of tissue engineering.
Collapse
Affiliation(s)
| | - Krishnendu Saha
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Brian Creran
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Avinash Bajaj
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Daniel F. Moyano
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Hao Wang
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003
| |
Collapse
|
3
|
Lee HJ, Kim DN, Park S, Lee Y, Koh WG. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates. Acta Biomater 2011; 7:1281-9. [PMID: 21056702 DOI: 10.1016/j.actbio.2010.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/28/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated.
Collapse
|
4
|
Kim DH, Lee H, Lee YK, Nam JM, Levchenko A. Biomimetic nanopatterns as enabling tools for analysis and control of live cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:4551-4566. [PMID: 20803528 DOI: 10.1002/adma.201000468] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
It is becoming increasingly evident that cell biology research can be considerably advanced through the use of bioengineered tools enabled by nanoscale technologies. Recent advances in nanopatterning techniques pave the way for engineering biomaterial surfaces that control cellular interactions from the nano- to the microscale, allowing more precise quantitative experimentation capturing multi-scale aspects of complex tissue physiology in vitro. The spatially and temporally controlled display of extracellular signaling cues on nanopatterned surfaces (e. g., cues in the form of chemical ligands, controlled stiffness, texture, etc.) that can now be achieved on biologically relevant length scales is particularly attractive enabling experimental platform for investigating fundamental mechanisms of adhesion-mediated cell signaling. Here, we present an overview of bio-nanopatterning methods, with the particular focus on the recent advances on the use of nanofabrication techniques as enabling tools for studying the effects of cell adhesion and signaling on cell function. We also highlight the impact of nanoscale engineering in controlling cell-material interfaces, which can have profound implications for future development of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
5
|
Cole JJ, Lin EC, Barry CR, Jacobs HO. Mimicking electrodeposition in the gas phase: a programmable concept for selected-area fabrication of multimaterial nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1117-1124. [PMID: 20486219 DOI: 10.1002/smll.200901547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
An in situ gas-phase process that produces charged streams of Au, Si, TiO(2), ZnO, and Ge nanoparticles/clusters is reported together with a programmable concept for selected-area assembly/printing of more than one material type. The gas-phase process mimics solution electrodeposition whereby ions in the liquid phase are replaced with charged clusters in the gas phase. The pressure range in which the analogy applies is discussed and it is demonstrated that particles can be plated into pores vertically (minimum resolution 60 nm) or laterally to form low-resistivity (48 microOmega cm) interconnects. The process is applied to the formation of multimaterial nanoparticle films and sensors. The system works at atmospheric pressure and deposits material at room temperature onto electrically biased substrate regions. The combination of pumpless operation and parallel nozzle-free deposition provides a scalable tool for printable flexible electronics and the capability to mix and match materials.
Collapse
Affiliation(s)
- Jesse J Cole
- Electrical Engineering, University of Minnesota, Rm. 4-178, 200 Union St. SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
6
|
Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. LAB ON A CHIP 2010; 10:36-42. [PMID: 20024048 DOI: 10.1039/b907515a] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have developed a simple multi-layer microfluidic device by integrating a polydimethyl siloxane (PDMS) microfluidic channel and a porous membrane substrate to culture and analyze the renal tubular cells. As a model cell type, primary rat inner medullary collecting duct (IMCD) cells were cultured inside the channel. To generate in vivo-like tubular environments for the cells, a fluidic shear stress of 1 dyn/cm(2) was applied for 5 hours, allowing for optimal fluidic conditions for the cultured cells, as verified by enhanced cell polarization, cytoskeletal reorganization, and molecular transport by hormonal stimulations. These results suggest that the microfluidic device presented here is useful for resembling an in vivo renal tubule system and has potential applications in drug screening and advanced tissue engineering.
Collapse
Affiliation(s)
- Kyung-Jin Jang
- Interdisciplinary Program in Nano-Science and Technology, Seoul, 151-747, Korea
| | | |
Collapse
|
7
|
Loh O, Lam R, Chen M, Moldovan N, Huang H, Ho D, Espinosa HD. Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1667-1674. [PMID: 19437464 DOI: 10.1002/smll.200900361] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanodiamonds are rapidly emerging as promising carriers for next-generation therapeutics and drug delivery. However, developing future nanoscale devices and arrays that harness these nanoparticles will require unrealized spatial control. Furthermore, single-cell in vitro transfection methods lack an instrument that simultaneously offers the advantages of having nanoscale dimensions and control and continuous delivery via microfluidic components. To address this, two modes of controlled delivery of functionalized diamond nanoparticles are demonstrated using a broadly applicable nanofountain probe, a tool for direct-write nanopatterning with sub-100-nm resolution and direct in vitro single-cell injection. This study demonstrates the versatility of the nanofountain probe as a tool for high-fidelity delivery of functionalized nanodiamonds and other agents in nanomanufacturing and single-cell biological studies. These initial demonstrations of controlled delivery open the door to future studies examining the nanofountain probe's potential in delivering specific doses of DNA, viruses, and other therapeutically relevant biomolecules.
Collapse
Affiliation(s)
- Owen Loh
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111, USA
| | | | | | | | | | | | | |
Collapse
|