1
|
Park JH, Wang CPJ, Lee HJ, Hong KS, Ahn JH, Cho YW, Lee JH, Seo HS, Park W, Kim SN, Park CG, Lee W, Kim TH. Uniform Gold Nanostructure Formation via Weakly Adsorbed Gold Films and Thermal Annealing for Reliable Localized Surface Plasmon Resonance-Based Detection of DNase-I. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302023. [PMID: 37246275 DOI: 10.1002/smll.202302023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Deoxyribonuclease-I (DNase-I), a representative endonuclease, is an important biomarker for the diagnosis of infectious diseases and cancer progression. However, enzymatic activity decreases rapidly ex vivo, which highlights the need for precise on-site detection of DNase-I. Here, a localized surface plasmon resonance (LSPR) biosensor that enables the simple and rapid detection of DNase-I is reported. Moreover, a novel technique named electrochemical deposition and mild thermal annealing (EDMIT) is applied to overcome signal variations. By taking advantage of the low adhesion of gold clusters on indium tin oxide substrates, both the uniformity and sphericity of gold nanoparticles are increased under mild thermal annealing conditions via coalescence and Ostwald ripening. This ultimately results in an approximately 15-fold decrease in LSPR signal variations. The linear range of the fabricated sensor is 20-1000 ng mL-1 with a limit of detection (LOD) of 127.25 pg mL-1 , as demonstrated by spectral absorbance analyses. The fabricated LSPR sensor stably measured DNase-I concentrations from samples collected from both an inflammatory bowel disease (IBD) mouse model, as well as human patients with severe COVID-19 symptoms. Therefore, the proposed LSPR sensor fabricated via the EDMIT method can be used for early diagnosis of other infectious diseases.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
| | - Hye-Jin Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Kyung Soo Hong
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University, Regional Center for Respiratory Diseases, Yeungnam University Medical Center, 42415, Daegu, Republic of Korea
| | - Jung Hong Ahn
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University, Regional Center for Respiratory Diseases, Yeungnam University Medical Center, 42415, Daegu, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Jeong-Hyeon Lee
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 06974, Seoul, Republic of Korea
| |
Collapse
|
3
|
Liu X, Choi B, Gozubenli N, Jiang P. Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach. J Colloid Interface Sci 2013; 409:52-8. [PMID: 23978286 DOI: 10.1016/j.jcis.2013.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 11/30/2022]
Abstract
Here, we report a scalable bottom-up approach for fabricating periodic arrays of metal nanorings and nanocrescents. Wafer-scale monolayer silica colloidal crystals with an unusual non-close-packed structure prepared by a simple and rapid spin-coating technology are used as both etching and shadowing masks to create nanoring-shaped trenches in between templated polymer posts and sacrificial nanoholes. Directional deposition of metals in the trenches followed by liftoff of the polymer posts and the sacrificial nanoholes results in forming ordered metal nanorings. The inner and outer radii of the final nanorings are determined by the sizes of the templated polymer posts and the silica microspheres which can be easily adjusted by tuning the spin-coating and templating conditions. Most importantly, by simply controlling the tilt angle of the substrate toward the directional metal beams, continuous geometric transition from concentric nanorings to eccentric nanorings to nanocrescents can be achieved. This new colloidal templating approach is compatible with standard semiconductor microfabrication, promising for mass-production and on-chip integration of periodic nanorings and nanocrescents for a wide spectrum of technological applications ranging from nanooptical devices and ultrasensitive biosensing to magnetic memories and logic circuits.
Collapse
Affiliation(s)
- Xuefeng Liu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, jiangsu 214122, China.
| | | | | | | |
Collapse
|
4
|
Kanté B, Park YS, O'Brien K, Shuldman D, Lanzillotti-Kimura ND, Jing Wong Z, Yin X, Zhang X. Symmetry breaking and optical negative index of closed nanorings. Nat Commun 2013; 3:1180. [PMID: 23149726 DOI: 10.1038/ncomms2161] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 09/24/2012] [Indexed: 11/09/2022] Open
Abstract
Metamaterials have extraordinary abilities, such as imaging beyond the diffraction limit and invisibility. Many metamaterials are based on split-ring structures, however, like atomic orbital currents, it has long been believed that closed rings cannot produce negative refractive index. Here we report a low-loss and polarization-independent negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite 'chess metamaterial'. The formation of an ultra-broad Fano-resonance-induced optical negative-index band, spanning wavelengths from 1.3 to 2.3 μm, is experimentally observed in this structure. This discrete and mono-particle negative-index approach opens exciting avenues towards symmetry-controlled topological nanophotonics with on-demand linear and nonlinear responses.
Collapse
Affiliation(s)
- Boubacar Kanté
- NSF Nanoscale Science and Engineering Centre, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem Rev 2011; 111:3736-827. [DOI: 10.1021/cr1004452] [Citation(s) in RCA: 996] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew R. Jones
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kyle D. Osberg
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Robert J. Macfarlane
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Mark R. Langille
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A. Mirkin
- Department of Materials Science and Engineering, ‡Department of Chemistry, and §International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
6
|
Zhang J, Li Y, Zhang X, Yang B. Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:4249-69. [PMID: 20803529 DOI: 10.1002/adma.201000755] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Self-assembly of colloidal microspheres or nanospheres is an effective strategy for fabrication of ordered nanostructures. By combination of colloidal self-assembly with nanofabrication techniques, two-dimensional (2D) colloidal crystals have been employed as masks or templates for evaporation, deposition, etching, and imprinting, etc. These methods are defined as "colloidal lithography", which is now recognized as a facile, inexpensive, and repeatable nanofabrication technique. This paper presents an overview of 2D colloidal crystals and nanostructure arrays fabricated by colloidal lithography. First, different methods for fabricating self-assembled 2D colloidal crystals and complex 2D colloidal crystal structures are summarized. After that, according to the nanofabrication strategy employed in colloidal lithography, related works are reviewed as colloidal-crystal-assisted evaporation, deposition, etching, imprinting, and dewetting, respectively.
Collapse
Affiliation(s)
- Junhu Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | | | | | | |
Collapse
|
7
|
Liu SD, Zhang ZS, Wang QQ. High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation. OPTICS EXPRESS 2009; 17:2906-2917. [PMID: 19219194 DOI: 10.1364/oe.17.002906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The multipolar plasmon resonance and propagation of Au nanorings with symmetry broken were analyzed by using DDA and FDTD methods. Based on the multipolar plasmon resonance and propagation, we proposed ring-nanosensors with high sensitivities and optical ringnanoantennas with large local field enhancements. We revealed that the refractive index sensitivities of split nanorings are about 100% larger than those of perfect nanorings with same size; the local field intensity enhancement of split nanoring with three gaps has increased by 37% than that of dipole antennas.
Collapse
Affiliation(s)
- S D Liu
- Department of Physics, Key Laboratory of Acoustic and Photonic Materials and Devices of Ministry of Education, Wuhan University, Wuhan, 430072, People's Republic of China
| | | | | |
Collapse
|