1
|
Zhang W, Zhou R, Yang Y, Peng S, Xiao D, Kong T, Cai X, Zhu B. Aptamer-mediated synthesis of multifunctional nano-hydroxyapatite for active tumour bioimaging and treatment. Cell Prolif 2021; 54:e13105. [PMID: 34382270 PMCID: PMC8450118 DOI: 10.1111/cpr.13105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The nano-hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post-modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411-targeted tumour dual-model bioimaging using DNA aptamer AS1411 as a template. Then, the imaging properties and the biocompatibility of the synthesized AS-nFAp:Gd/Tb were further investigated. MATERIALS AND METHODS The AS-nFAp:Gd/Tb was prepared under mild conditions through a one-pot procedure with AS1411 as a template. Besides, the anticancer drug DOX was loaded to AS-nFAp:Gd/Tb so as to achieve the establishment of a multifunctional nano-probe that integrated the tumour diagnosis and treatment. The AS-nFAp:Gd/Tb was characterized by transmission electron microscopy (TEM), energy disperse X-ray Spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS) spectrum, X-ray diffraction (XRD), fourier-transformed infrared (FTIR) spectroscopy, capillary electrophoresis analyses, zeta potential and particle sizes. The in vitro magnetic resonance imaging (MRI) and fluorescence imaging were performed on an MRI system and a confocal laser scanning microscope, respectively. The potential of the prepared multifunctional nHAp for a targeted tumour therapy was investigated by a CCK-8 kit. And the animal experiments were conducted on the basis of the guidelines approved by the Animal Care and Use Committee of Sichuan University, China. RESULTS In the presence of AS1411, the as-prepared AS-nFAp:Gd/Tb presented a needle-like morphology with good monodispersity and improved imaging performance. Furthermore, due to the specific binding between AS1411 and nucleolin up-expressed in cancer cells, the AS-nFAp:Gd/Tb possessed excellent AS1411-targeted fluorescence and MRI imaging properties. Moreover, after loading chemotherapy drug DOX, in vitro and in vivo studies showed that DOX@AS-nFAp:Gd/Tb could effectively deliver DOX to tumour tissues and exert a highly effective tumour inhibition without systemic toxicity compared with pure DOX. CONCLUSIONS The results indicated that the prepared multifunctional nHAp synthesized by a novel biomimetic strategy had outstanding capabilities of recognition and treatment for the tumour and had good biocompatibility; hence, it might have a potential clinical application in the future.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Kong
- Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, Multi-Omics Innovative Research Center of Forensic Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Hu H, Zhao P, Liu J, Ke Q, Zhang C, Guo Y, Ding H. Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway. J Nanobiotechnology 2018; 16:98. [PMID: 30497456 PMCID: PMC6263548 DOI: 10.1186/s12951-018-0411-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Fabrication of porous scaffolds with great biocompatibility and osteoinductivity to promote bone defect healing has attracted extensive attention. METHODS In a previous study, novel lanthanum phosphate (LaPO4)/chitosan (CS) scaffolds were prepared by distributing 40- to 60-nm LaPO4 nanoparticles throughout plate-like CS films. RESULTS Interconnected three dimensional (3D) macropores within the scaffolds increased the scaffold osteoconductivity, thereby promoting cell adhesion and bone tissue in-growth. The LaPO4/CS scaffolds showed no obvious toxicity and accelerated bone generation in a rat cranial defect model. Notably, the element La in the scaffolds was found to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through the Wnt/β-catenin signalling pathway and induced high expression of the osteogenesis-related genes alkaline phosphatase, osteocalcin and Collagen I (Col-I). Moreover, the LaPO4/CS scaffolds enhanced bone regeneration and collagen fibre deposition in rat critical-sized calvarial defect sites. CONCLUSION The novel LaPO4/CS scaffolds provide an admirable and promising platform for the repair of bone defects.
Collapse
Affiliation(s)
- Haoran Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Peipei Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jiayu Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Qinfei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yaping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Hao Ding
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
3
|
Santos C, Turiel S, Sousa Gomes P, Costa E, Santos-Silva A, Quadros P, Duarte J, Battistuzzo S, Fernandes MH. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior. J Nanobiotechnology 2018; 16:27. [PMID: 29566760 PMCID: PMC5863823 DOI: 10.1186/s12951-018-0357-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vascular homeostasis is ensured by a dynamic interplay involving the endothelium, the platelets and the coagulation system. Thus, the vascular safety of particulate materials must address this integrated system, an approach that has been largely neglected. This work analysed the effects of commercial hydroxyapatite (HA) particles in blood compatibility and in endothelial cell behavior, due to their clinical relevance and scarcity of data on their vascular biosafety. RESULTS Particles with similar chemical composition and distinct size and morphology were tested, i.e. rod-like, nano dimensions and low aspect ratio (HAp1) and needle-shape with wider size and aspect ratio (HAp2). HAp1 and HAp2, at 1 to 10 mg/mL, did not affect haemolysis, platelet adhesion, aggregation and activation, or the coagulation system (intrinsic and extrinsic pathways), although HAp2 exhibited a slight thrombogenic potential at 10 mg/mL. Notwithstanding, significantly lower levels presented dose-dependent toxicity on endothelial cells' behavior. HAp1 and HAp2 decreased cell viability at levels ≥ 250 and ≥ 50 μg/mL, respectively. At 10 and 50 μg/mL, HAp1 did not interfere with the F-actin cytoskeleton, apoptotic index, cell cycle progression, expression of vWF, VECad and CD31, and the ability to form a network of tubular-like structures. Comparatively, HAp2 caused dose-dependent toxic effects in these parameters in the same concentration range. CONCLUSION The most relevant observation is the great discrepancy of HA particles' levels that interfere with the routine blood compatibility assays and the endothelial cell behavior. Further, this difference was also found to be dependent on the particles' size, morphology and aspect ratio, emphasizing the need of a complementary biological characterization, taking into consideration the endothelial cells' functionality, to establish the vascular safety of particulate HA.
Collapse
Affiliation(s)
- Catarina Santos
- EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2914-508, Setúbal, Portugal.,CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Suzy Turiel
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Pedro Sousa Gomes
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal.,REQUIMTE/LAQV - U. Porto, Porto, Portugal
| | - Elísio Costa
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, U. Porto (FFUP), Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, U. Porto (FFUP), Porto, Portugal
| | | | - José Duarte
- CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| | - Sílvia Battistuzzo
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Campus Universitário s/n, Lagoa Nova, Natal, RN, 59072-970, Brazil
| | - Maria Helena Fernandes
- Faculdade de Medicina Dentária, U. Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal. .,REQUIMTE/LAQV - U. Porto, Porto, Portugal.
| |
Collapse
|
4
|
Santos C, Gomes P, Duarte JA, Almeida MM, Costa MEV, Fernandes MH. Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation. Int J Pharm 2016; 516:185-195. [PMID: 27851979 DOI: 10.1016/j.ijpharm.2016.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/28/2022]
Abstract
Recently it has been shown that folic acid can have an important role in bone regeneration. For this reason, combining a classic bone regeneration system as, hydroxyapatite, loaded with folic acid, may be an important issue to be developed. To address this issue, hydroxyapatite nanoparticles loaded with folic acid were designed as an effective bone regenerative system, to induce osteoblast differentiation and improve the bone regeneration. HapNP were prepared by a hydrothermal method that used citric acid as a tailoring agent of particles morphology and, simultaneously, had the particularly to let carboxylic pendant groups in the particle surface, which provided a platform for the immobilization of folic acid (FA), producing HapNP-FA. A comparative study among hydroxyapatite nanoparticles loaded and unloaded with folic acid in presence of human mesenchymal stem cells was performed. The results demonstrate, that nanoparticles were able to be internalized by human mesenchymal stem cells. In addition, cell proliferation and viability were not affected in a wide concentration range. Both particles induced the expression of Runx2 and the expression and activity of alkaline phosphatase. However, HapNP-FA caused a significantly higher overexpression of Runx2. The osteoblastic differentiation confirms the potential applicability of HapNP-FA in the local bone regeneration.
Collapse
Affiliation(s)
- Catarina Santos
- EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2914-508 Setúbal, Portugal; CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, Porto, Portugal; REQUIMTE/LAQV, U. Porto, Porto, Portugal
| | - José A Duarte
- CIAFEL, Faculdade de Desporto, Universidade do Porto, Portugal
| | - Margarida M Almeida
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria E V Costa
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, Porto, Portugal; REQUIMTE/LAQV, U. Porto, Porto, Portugal
| |
Collapse
|
5
|
Lee JH, Shin YC, Lee SM, Jin OS, Kang SH, Hong SW, Jeong CM, Huh JB, Han DW. Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites. Sci Rep 2015; 5:18833. [PMID: 26685901 PMCID: PMC4685392 DOI: 10.1038/srep18833] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/27/2015] [Indexed: 12/22/2022] Open
Abstract
Recently, graphene-based nanomaterials, in the form of two dimensional substrates or three dimensional foams, have attracted considerable attention as bioactive scaffolds to promote the differentiation of various stem cells towards specific lineages. On the other hand, the potential advantages of using graphene-based hybrid composites directly as factors inducing cellular differentiation as well as tissue regeneration are unclear. This study examined whether nanocomposites of reduced graphene oxide (rGO) and hydroxyapatite (HAp) (rGO/HAp NCs) could enhance the osteogenesis of MC3T3-E1 preosteoblasts and promote new bone formation. When combined with HAp, rGO synergistically promoted the spontaneous osteodifferentiation of MC3T3-E1 cells without hindering their proliferation. This enhanced osteogenesis was corroborated from determination of alkaline phosphatase activity as early stage markers of osteodifferentiation and mineralization of calcium and phosphate as late stage markers. Immunoblot analysis showed that rGO/HAp NCs increase the expression levels of osteopontin and osteocalcin significantly. Furthermore, rGO/HAp grafts were found to significantly enhance new bone formation in full-thickness calvarial defects without inflammatory responses. These results suggest that rGO/HAp NCs can be exploited to craft a range of strategies for the development of novel dental and orthopedic bone grafts to accelerate bone regeneration because these graphene-based composite materials have potentials to stimulate osteogenesis.
Collapse
Affiliation(s)
- Jong Ho Lee
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Yong Cheol Shin
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Sang-Min Lee
- Department of Prosthodontics, Pusan National University Dental Hospital, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 626-770, South Korea
| | - Oh Seong Jin
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Seok Hee Kang
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Suck Won Hong
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| | - Chang-Mo Jeong
- Department of Prosthodontics, Pusan National University Dental Hospital, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 626-770, South Korea
| | - Jung Bo Huh
- Department of Prosthodontics, Pusan National University Dental Hospital, Dental Research Institute, School of Dentistry, Pusan National University, Yangsan 626-770, South Korea
| | - Dong-Wook Han
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
6
|
Zhao Y, Shi L, Fang J, Feng X. Bio-nanoplatforms based on carbon dots conjugating with F-substituted nano-hydroxyapatite for cellular imaging. NANOSCALE 2015; 7:20033-20041. [PMID: 26568461 DOI: 10.1039/c5nr06837a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Carbon dots (CDs) have shown great promise in a wide range of bioapplications due to their tunable optical properties and noncytotoxicity. For the first time, a rational strategy was designed to construct new bio-nanoplatforms based on carboxylic acid terminated CDs (CDs-COOH) conjugating with amino terminated F-substituted nano-hydroxyapatite (NFAp) via EDC/NHS coupling chemistry. The monodisperse NFAp nanorods were functionalized with o-phosphoethanolamine (PEA) to provide them with amino groups and render them hydrophilic with respect to the ligand exchange process. The CDs-COOH@PEA-NFAp conjugates exhibits bright blue fluorescence under UV illumination, excellent photostability and colloidal stability. Due to their low cytotoxicity and good biocompatibility as determined by methyl thiazolyl tetrazolium (MTT) assay, the CDs-COOH@PEA-NFAp conjugates were successfully applied as bio-nanoplatforms to MCF-7 breast cancer cells for cellular imaging in vitro. More importantly, the functional CDs conjugated to NFAp provide an extended and general approach to construct different water-soluble NFAp bio-nanoplatforms for other easily functionalised luminescent materials. Therefore, these green nanoplatforms may be a prospective candidate for applications in bioimaging or targeted biological therapy and drug delivery.
Collapse
Affiliation(s)
- Yafei Zhao
- Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China.
| | | | | | | |
Collapse
|
7
|
Lee JH, Shin YC, Jin OS, Kang SH, Hwang YS, Park JC, Hong SW, Han DW. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. NANOSCALE 2015; 7:11642-11651. [PMID: 26098486 DOI: 10.1039/c5nr01580d] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human mesenchymal stem cells (hMSCs) have great potential as cell sources for bone tissue engineering and regeneration, but the control and induction of their specific differentiation into bone cells remain challenging. Graphene-based nanomaterials are considered attractive candidates for biomedical applications such as scaffolds in tissue engineering, substrates for SC differentiation and components of implantable devices, due to their biocompatible and bioactive properties. Despite the potential biomedical applications of graphene and its derivatives, only limited information is available regarding their osteogenic activity. This study concentrates upon the effects of reduced graphene oxide (rGO)-coated hydroxyapatite (HAp) composites on osteogenic differentiation of hMSCs. The average particle sizes of HAp and rGO were 1270 ± 476 nm and 438 ± 180 nm, respectively. When coated on HAp particulates, rGO synergistically enhanced spontaneous osteogenic differentiation of hMSCs, without hampering their proliferation. This result was confirmed by determining alkaline phosphatase activity and mineralization of calcium and phosphate as early and late stage markers of osteogenic differentiation. It is suggested that rGO-coated HAp composites can be effectively utilized as dental and orthopedic bone fillers since these graphene-based particulate materials have potent effects on stimulating the spontaneous differentiation of MSCs and show superior bioactivity and osteoinductive potential.
Collapse
Affiliation(s)
- Jong Ho Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
The role of fetuin-A in mineral trafficking and deposition. BONEKEY REPORTS 2015; 4:672. [PMID: 25987986 DOI: 10.1038/bonekey.2015.39] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Calcium and phosphate are the principle ions involved in the deposition of mineral in the human body. Inhibitors of mineralisation are essential for the prevention of ectopic mineral precipitation and deposition. In the past decade, through in vitro, in vivo and clinical observation studies, we have come to appreciate the importance of fetuin-A (Fet-A), a circulating glycoprotein, in preventing ectopic calcium phosphate mineralisation. Moreover, the detection of Fet-A-containing mineral complex, termed calciprotein particles (CPPs), has provided new ways to assess an individual's calcific risk. The pathophysiological significance of CPPs in disease states is yet to be defined, but it provides an exciting avenue to further our understanding of the development of ectopic mineralisation.
Collapse
|
9
|
Zhou R, Li M, Wang S, Wu P, Wu L, Hou X. Low-toxic Mn-doped ZnSe@ZnS quantum dots conjugated with nano-hydroxyapatite for cell imaging. NANOSCALE 2014; 6:14319-25. [PMID: 25325899 DOI: 10.1039/c4nr04473h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fluorescent bio-imaging has received significant attention in a myriad of research disciplines, and QDs are playing an increasingly important role in these areas. Doped QDs, an important alternative to conventional heavy metal-containing QDs are employed for biomedical applications. However, since QDs are exogenous substances to the biological environment, the biocompatibility of QDs is expected to be challenging in some cases. Herein, nano fluorine-doped hydroxyapatite (FAp, a well-known biocompatible material) was introduced to endow biocompatibility to Cd-free Mn-doped ZnSe@ZnS QDs. Thus, a nano-FAp-QD conjugate was developed and the biocompatibility, as well as potential cell imaging application, was investigated. To construct the proposed conjugate, Cd-free highly luminescent Mn-doped ZnSe@ZnS QDs and monodispersed nano-FAp were first prepared in high-temperature organic media. For facilitating the conjugation, hydrophobic nano-FAp was made water soluble via o-phosphoethanolamine (PEA) coating, which further provides conjugating sites for QDs to anchor. Cytotoxicity studies indicated the developed conjugate indeed possesses good compatibility and low toxicity to cells. The nano-FAp-QDs conjugate was successfully employed for cancer cell staining for at least 24 h, demonstrating the potential usefulness of this material in future biomedical research.
Collapse
Affiliation(s)
- Ronghui Zhou
- Key Lab of Green Chemistry and Technology of MOE in College of Chemistry, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | |
Collapse
|
10
|
Santos C, Gomes PS, Duarte JA, Franke RP, Almeida MM, Costa MEV, Fernandes MH. Relevance of the sterilization-induced effects on the properties of different hydroxyapatite nanoparticles and assessment of the osteoblastic cell response. J R Soc Interface 2012; 9:3397-410. [PMID: 22809851 DOI: 10.1098/rsif.2012.0487] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hydroxyapatite (Hap) is a calcium phosphate with a chemical formula that closely resembles that of the mineral constituents found in hard tissues, thereby explaining its natural biocompatibility and wide biomedical use. Nanostructured Hap materials appear to present a good performance in bone tissue applications because of their ability to mimic the dimensions of bone components. However, bone cell response to individual nanoparticles and/or nanoparticle aggregates lost from these materials is largely unknown and shows great variability. This work addresses the preparation and characterization of two different Hap nanoparticles and their interaction with osteoblastic cells. Hap particles were produced by a wet chemical synthesis (WCS) at 37°C and by hydrothermal synthesis (HS) at 180°C. As the ultimate in vivo applications require a sterilization step, the synthesized particles were characterized 'as prepared' and after sterilization (autoclaving, 120°C, 20 min). WCS and HS particles differ in their morphological (size and shape) and physicochemical properties. The sterilization modified markedly the shape, size and aggregation state of WCS nanoparticles. Both particles were readily internalized by osteoblastic cells by endocytosis, and showed a low intracellular dissolution rate. Concentrations of WCS and HS particles less than 500 μg ml(-1) did not affect cell proliferation, F-actin cytoskeleton organization and apoptosis rate and increased the gene expression of alkaline phosphatase and BMP-2. The two particles presented some differences in the elicited cell response. In conclusion, WCS and HS particles might exhibit an interesting profile for bone tissue applications. Results suggest the relevance of a proper particle characterization, and the interest of an individual nanoparticle targeted research.
Collapse
Affiliation(s)
- C Santos
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
11
|
Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts. J Biomed Biotechnol 2012; 2012:428503. [PMID: 22319242 PMCID: PMC3272836 DOI: 10.1155/2012/428503] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/19/2011] [Indexed: 01/13/2023] Open
Abstract
Pulsed laser deposition was proved as a suitable method for hydroxyapatite (HA) coating of coaxial poly-ɛ-caprolactone/polyvinylalcohol (PCL/PVA) nanofibers. The fibrous morphology of PCL/PVA nanofibers was preserved, if the nanofiber scaffold was coated with thin layers of HA (200 nm and 400 nm). Increasing thickness of HA, however, resulted in a gradual loss of fibrous character. In addition, biomechanical properties were improved after HA deposition on PCL/PVA nanofibers as the value of Young's moduli of elasticity significantly increased. Clearly, thin-layer hydroxyapatite deposition on a nanofiber surface stimulated mesenchymal stem cell viability and their differentiation into osteoblasts. The optimal depth of HA was 800 nm.
Collapse
|
12
|
Li D, Ye C, Zhu Y, Qi Y, Gou Z, Gao C. Fabrication of poly(lactide-co-glycolide) scaffold embedded spatially with hydroxyapatite particles on pore walls for bone tissue engineering. POLYM ADVAN TECHNOL 2011. [DOI: 10.1002/pat.2066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Zhejiang-California International NanoSystems Institute; Hangzhou 310027 China
| | - Chen Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yiying Qi
- Department of Orthopedic Surgery, Second Affiliated Hospital; Zhejiang University; Hangzhou 310027 China
| | - Zhongru Gou
- Zhejiang-California International NanoSystems Institute; Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- State Key Laboratory of Diagnosis and Treatment for Infectious Diseases, First Affiliated Hospital, College of Medicine; Zhejiang University; Hangzhou 310003 China
| |
Collapse
|