1
|
Zhou X, Guo M, Wang Z, Wang Y, Zhang P. Rapid fabrication of biomimetic PLGA microsphere incorporated with natural porcine dermal aECM for bone regeneration. Regen Biomater 2024; 11:rbae099. [PMID: 39463918 PMCID: PMC11512121 DOI: 10.1093/rb/rbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/22/2024] [Accepted: 07/18/2024] [Indexed: 10/29/2024] Open
Abstract
Bioactive microspheres coated with acellular extracellular matrix (aECM) have received extensive attention in bone tissue engineering. In this work, biomimetic microspheres with different aECM ratios, uniform size and controllable size were prepared easily by blending natural porcine dermal aECM and poly (lactic-co-glycolic acid) (PLGA) using electrohydrodynamic spraying and solidification actuated by solvent extraction method. In this work, the appropriate polymer concentration and preparation voltage were investigated, and the surface morphology of the microspheres was observed by scanning electron microscope. Sirius red was used to visualize aECM exposure on the surface of the microspheres. The in vitro and in vivo experiments were carried out to evaluate the bioactivity and osteogenic properties of the microspheres. The results showed that the morphology and size of PLGA microspheres had little influence on the aECM blending. In vitro experiments showed that the higher the content of aECM, the better the cell adhesion performance. In vivo, rat calvarial defect models were observed and characterized at 4 and 8 weeks postoperatively, and the values of BV/TV of 50aECM/PLGA were 47.57 ± 1.14% and 72.92 ± 2.19%, respectively. The results showed that the skull healing effect was better in aECM-containing microspheres. In conclusion, aECM/PLGA composite microspheres can increase cell adhesion performance through the addition of aECM. Moreover, in vivo experiments have proved that aECM/PLGA microspheres are beneficial to bone repair, which means the aECM/PLGA microspheres are a promising bone tissue engineering material.
Collapse
Affiliation(s)
- Xiaosong Zhou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Semitela Â, Ramalho G, Capitão A, Sousa C, Mendes AF, Aap Marques P, Completo A. Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication. J Tissue Eng 2022; 13:20417314211069342. [PMID: 35024136 PMCID: PMC8743920 DOI: 10.1177/20417314211069342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023] Open
Abstract
Electrospinning has been widely used to fabricate fibrous scaffolds for cartilage tissue engineering, but their small pores severely restrict cell infiltration, resulting in an uneven distribution of cells across the scaffold, particularly in three-dimensional designs. If bio-electrospraying is applied, direct chondrocyte incorporation into the fibers during electrospinning may be a solution. However, before this approach can be effectively employed, it is critical to identify whether chondrocytes are adversely affected. Several electrospraying operating settings were tested to determine their effect on the survival and function of an immortalized human chondrocyte cell line. These chondrocytes survived through an electric field formed by low needle-to-collector distances and low voltage. No differences in chondrocyte viability, morphology, gene expression, or proliferation were found. Preliminary data of the combination of electrospraying and polymer electrospinning disclosed that chondrocyte integration was feasible using an alternated approach. The overall increase in chondrocyte viability over time indicated that the embedded cells retained their proliferative capacity. Besides the cell line, primary chondrocytes were also electrosprayed under the previously optimized operational conditions, revealing the higher sensitivity degree of these cells. Still, their post-electrosprayed viability remained considerably high. The data reported here further suggest that bio-electrospraying under the optimal operational conditions might be a promising alternative to the existent cell seeding techniques, promoting not only cells safe delivery to the scaffold, but also the development of cellularized cartilage tissue constructs.
Collapse
Affiliation(s)
- Ângela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Gonçalo Ramalho
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Ana Capitão
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Cátia Sousa
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Alexandrina F Mendes
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Paula Aap Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Abstract
In this review, a brief history of this unrivaled technology, flow cytometry, is provided, highlighting its past and present advances, with particular focus on "flow cell" technologies. Flow cytometry has truly revolutionized high-throughput single cell analysis, which has tremendous implications, from laboratory to the clinic. This technology embodies what is truly referred to as cross fertile research, merging the physical with the life sciences. This review introduces the recent notable advancements in flow cell technology. This advancement sees the complete removal of liquid sheath flow, which has advanced the technology with the possibility of both the reduction in its foot print, while also simplifying the flow cells explored in cytometry. Interestingly, the novel sheathless flow cell technology demonstrated herein has the flexibility for handling both heterogeneous cell populations and whole organisms, thus demonstrating a versatile flow cell technology for both flow cytometry and fluorescent-activated cell sorting.
Collapse
Affiliation(s)
- Suwan N Jayasinghe
- BioPhysics Group, Centre for Stem Cells and Regenerative Medicine, Institute of Healthcare Engineering and Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| |
Collapse
|
4
|
Bongiovanni Abel S, Montini Ballarin F, Abraham GA. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions. NANOTECHNOLOGY 2020; 31:172002. [PMID: 31931493 DOI: 10.1088/1361-6528/ab6ab4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The development of three-dimensional (3D) scaffolds with physical and chemical topological cues at the macro-, micro-, and nanometer scale is urgently needed for successful tissue engineering applications. 3D scaffolds can be manufactured by a wide variety of techniques. Electrospinning technology has emerged as a powerful manufacturing technique to produce non-woven nanofibrous scaffolds with very interesting features for tissue engineering products. However, electrospun scaffolds have some inherent limitations that compromise the regeneration of thick and complex tissues. By integrating electrospinning and other fabrication technologies, multifunctional 3D fibrous assemblies with micro/nanotopographical features can be created. The proper combination of techniques leads to materials with nano and macro-structure, allowing an improvement in the biological performance of tissue-engineered constructs. In this review, we focus on the most relevant strategies to produce electrospun polymer/composite scaffolds with 3D architecture. A detailed description of procedures involving physical and chemical agents to create structures with large pores and 3D fiber assemblies is introduced. Finally, characterization and biological assays including in vitro and in vivo studies of structures intended for the regeneration of functional tissues are briefly presented and discussed.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET). Av. Colón 10850, B7606BWV, Mar del Plata, Argentina
| | | | | |
Collapse
|
5
|
Naqvi SM, Gansau J, Buckley CT. Priming and cryopreservation of microencapsulated marrow stromal cells as a strategy for intervertebral disc regeneration. ACTA ACUST UNITED AC 2018; 13:034106. [PMID: 29380742 DOI: 10.1088/1748-605x/aaab7f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A challenge in using stromal cells for intervertebral disc (IVD) regeneration is their limited differentiation capacity in vivo without exogenous growth factor (GF) supplementation. Priming of stromal cells prior to transplantation may offer a feasible strategy to overcome this limitation. Furthermore, the ability to cryopreserve cells could help alleviate logistical issues associated with storage and transport. With these critical translational challenges in mind, we aimed to develop a strategy involving priming and subsequent cryopreservation of microencapsulated bone marrow stromal cells (BMSCs). In phase one, we utilised the electrohydrodynamic atomisation process to fabricate BMSC-encapsulated microcapsules that were primed with TGF-β3 for 14 d after which they were cultured for a further 21 d under basal or GF supplemented media conditions. Results showed that priming induced differentiation of BMSC microcapsules such that they synthesised significant amounts of sGAG (61.9 ± 2.0 μg and 55.3 ± 6.1 μg for low and high cell densities) and collagen (24.4 ± 1.9 μg and 55.3 ± 4.6 μg for low and high cell densities) in continued culture without GF supplementation compared to Unprimed microcapsules. Phase two of this work assessed the extracellular matrix forming capacity of Primed BMSC microcapsules over 21 d after cryopreservation. Notably, primed and cryopreserved BMSCs successfully retained the ability to synthesise both sGAG (24.8 ± 2.7 μg and 75.1 ± 11.6 μg for low and high cell densities) and collagen (26.4 ± 7.8 μg and 93.1 ± 10.2 μg for low and high cell densities) post-cryopreservation. These findings demonstrate the significant potential of priming and cryopreservation approaches for IVD repair and could possibly open new horizons for pre-designed, 'off-the-shelf' injectable therapeutics.
Collapse
Affiliation(s)
- Syeda M Naqvi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland. School of Engineering, Trinity College Dublin, Ireland
| | | | | |
Collapse
|
6
|
Electrospun and Electrosprayed Scaffolds for Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:79-100. [PMID: 30357619 DOI: 10.1007/978-981-13-0950-2_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrospinning and electrospraying technologies provide an accessible and universal synthesis method for the continuous preparation of nanostructured materials. This chapter introduces recent uses of electrospun and electrosprayed scaffolds for tissue regeneration applications. More recent in vitro and in vivo of electrospun fibers are also discussed in relation to soft and hard tissue engineering applications. The focus is made on the bone, vascular, skin, neural and soft tissue regeneration. An introduction is presented regarding the production of biomaterials made by synthetic and natural polymers and inorganic and metallic materials for use in the production of scaffolds for regenerative medicine. For this proposal, the following techniques are discussed: electrospraying, co-axial and emulsion electrospinning and bio-electrospraying. Tissue engineering is an exciting and rapidly developing field for the understanding of how to regenerate the human body.
Collapse
|
7
|
Affiliation(s)
- Suwan N. Jayasinghe
- BioPhysics Group, UCL Centre for Stem Cells and Regenerative Medicine; UCL Department of Mechanical Engineering and UCL Institute of Healthcare Engineering; University College London; Torrington Place London WC1E 7JE United Kingdom
| |
Collapse
|
8
|
Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles. Ann Biomed Eng 2017; 45:1633-1649. [DOI: 10.1007/s10439-017-1816-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
|
9
|
Naqvi SM, Vedicherla S, Gansau J, McIntyre T, Doherty M, Buckley CT. Living Cell Factories - Electrosprayed Microcapsules and Microcarriers for Minimally Invasive Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5662-5671. [PMID: 26695531 DOI: 10.1002/adma.201503598] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Minimally invasive delivery of "living cell factories" consisting of cells and therapeutic agents has gained wide attention for next generation biomaterial device systems for multiple applications including musculoskeletal tissue regeneration, diabetes and cancer. Cellular-based microcapsules and microcarrier systems offer several attractive features for this particular purpose. One such technology capable of generating these types of systems is electrohydrodynamic (EHD) spraying. Depending on various parameters, including applied voltage, biomaterial properties (viscosity, conductivity) and needle geometry, complex structures and arrangements can be fabricated for therapeutic strategies. The advances in the use of EHD technology are outlined, specifically in the manipulation of bioactive and dynamic material systems to control size, composition and configuration in the development of minimally invasive micro-scaled biopolymeric systems. The exciting therapeutic applications of this technology, future perspectives and associated challenges are also presented.
Collapse
Affiliation(s)
- Syeda M Naqvi
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Srujana Vedicherla
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- School of Medicine, Trinity College Dublin, Ireland
| | - Jennifer Gansau
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Tom McIntyre
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- School of Medicine, Trinity College Dublin, Ireland
| | - Michelle Doherty
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Conor T Buckley
- Trinity Center for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical Engineering, School of Engineering, Trinity College Dublin, Ireland
| |
Collapse
|
10
|
Jayasinghe SN, Auguste J, Scotton CJ. Platform Technologies for Directly Reconstructing 3D Living Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7794-7799. [PMID: 26508202 DOI: 10.1002/adma.201503001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Bio-electrospraying and cell electrospinning is explored for reconstructing living biomaterials for regenerative biology and medicine. The investigations carried out in this study demonstrate these approaches as platform biotechnologies for tissue reconstruction for repair, replacement, and rejuvenation of damaged and/or ageing tissues and/or organs.
Collapse
Affiliation(s)
- Suwan N Jayasinghe
- BioPhysics Group, Institute of Biomedical Engineering, Centre for Stem Cells and Regenerative Medicine, and Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Jensen Auguste
- Olaf Pharmaceuticals, Biotech Three, One Innovation Dr, Worcester, MA, 01605, USA
| | - Chris J Scotton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter EX2 4TE, UK
| |
Collapse
|
11
|
Han YL, Wang S, Zhang X, Li Y, Huang G, Qi H, Pingguan-Murphy B, Li Y, Lu TJ, Xu F. Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discov Today 2014; 19:763-73. [PMID: 24508818 DOI: 10.1016/j.drudis.2014.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
Abstract
Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this review, we summarize the main physical cues that are crucial for controlling stem cell differentiation. Recent advances in the technologies for the construction of physical microenvironment and their implications in controlling stem cell fate are also highlighted.
Collapse
Affiliation(s)
- Yu Long Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Shuqi Wang
- Brigham Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaohui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Hao Qi
- Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and training Center, Beijing, 100094, China
| | - Tian Jian Lu
- Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, 710049, China; Bioinspired Engineering & Biomechanics Center, Xi'an Jiaotong University, Shaanxi, 710049, China.
| |
Collapse
|
12
|
Sampson SL, Saraiva L, Gustafsson K, Jayasinghe SN, Robertson BD. Cell electrospinning: an in vitro and in vivo study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:78-82. [PMID: 23894081 DOI: 10.1002/smll.201300804] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/28/2013] [Indexed: 05/11/2023]
Abstract
Cell electrospinning and aerodynamically assisted bio-threading are novel bioplatforms for directly forming large quantities of cell-laden scaffolds for creating living sheets and vessels in three-dimensions. The functional biological architectures generated will be useful in both the laboratory and the clinic.
Collapse
Affiliation(s)
- Samantha L Sampson
- MRC Centre for Molecular Bacteriology & Infection, Flowers Building, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
13
|
Bencherif SA, Braschler TM, Renaud P. Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. J Periodontal Implant Sci 2013; 43:251-61. [PMID: 24455437 PMCID: PMC3891856 DOI: 10.5051/jpis.2013.43.6.251] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 12/22/2013] [Indexed: 12/18/2022] Open
Abstract
A paradigm shift is taking place in medicine and dentistry from using synthetic implants and tissue grafts to a tissue engineering approach that uses degradable porous three-dimensional (3D) material hydrogels integrated with cells and bioactive factors to regenerate tissues such as dental bone and other oral tissues. Hydrogels have been established as a biomaterial of choice for many years, as they offer diverse properties that make them ideal in regenerative medicine, including dental applications. Being highly biocompatible and similar to native extracellular matrix, hydrogels have emerged as ideal candidates in the design of 3D scaffolds for tissue regeneration and drug delivery applications. However, precise control over hydrogel properties, such as porosity, pore size, and pore interconnectivity, remains a challenge. Traditional techniques for creating conventional crosslinked polymers have demonstrated limited success in the formation of hydrogels with large pore size, thus limiting cellular infiltration, tissue ingrowth, vascularization, and matrix mineralization (in the case of bone) of tissue-engineered constructs. Emerging technologies have demonstrated the ability to control microarchitectural features in hydrogels such as the creation of large pore size, porosity, and pore interconnectivity, thus allowing the creation of engineered hydrogel scaffolds with a structure and function closely mimicking native tissues. In this review, we explore the various technologies available for the preparation of macroporous scaffolds and their potential applications.
Collapse
Affiliation(s)
- Sidi A. Bencherif
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Thomas M. Braschler
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Laboratory of Microsystems, STI-LMIS4, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philippe Renaud
- Laboratory of Microsystems, STI-LMIS4, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
14
|
Leong MF, Chan WY, Chian KS. Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures. Nanomedicine (Lond) 2013; 8:555-66. [PMID: 23560407 DOI: 10.2217/nnm.13.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Conventional electrospun scaffolds have very small pores, thus limiting cellular infiltration, tissue ingrowth and vascularization in tissue engineering applications. The cryogenic electrospinning process overcame the small pore size constraints found in conventional electrospun scaffolds. AIM The aim of this paper is to propose a mechanism for cryogenic electrospinning and how scaffold pore size can be controlled. MATERIALS & METHODS We studied the roles of ice crystals in controlling the pore size of cryogenic electrospun scaffolds (CES). Based on this understanding, we have successfully fabricated a bilayered scaffold with distinctly different pore sizes. RESULTS Our study showed that CES pore size was dependent on the structure of the frost layer formed and hence the factors affecting ice deposition. The bilayered scaffold was able to support the coculture of human dermal fibroblasts and keratinocytes. CONCLUSION The larger pores of CES add versatility to the use of electrospun scaffolds in tissue engineering applications.
Collapse
Affiliation(s)
- Meng Fatt Leong
- Institute of Bioengineering & Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | | | | |
Collapse
|
15
|
Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. BIOMATTER 2013; 3:e24281. [PMID: 23512013 PMCID: PMC3749275 DOI: 10.4161/biom.24281] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 01/02/2023]
Abstract
Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area.
Collapse
Affiliation(s)
- Radhakrishnan Sridhar
- Center for Nanofibers and Nanotechnology; National University of Singapore; Singapore, Singapore
- Department of Mechanical Engineering; National University of Singapore; Singapore, Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology; National University of Singapore; Singapore, Singapore
- Department of Mechanical Engineering; National University of Singapore; Singapore, Singapore
- NUS Nanoscience & Nanotechnology Initiative; Singapore, Singapore
| |
Collapse
|
16
|
Recent advancements in tissue engineering for stem cell-based cardiac therapies. Ther Deliv 2013; 4:503-16. [PMID: 23557290 DOI: 10.4155/tde.13.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in cardiac tissue engineering have recently focused on utilizing stem cells to regenerate infarcted and scarred myocardium. Due to their proliferative nature and tremendous potential for differentiation, stem cells are presently being investigated for clinical applications. Unfortunately, limiting factors such as massive cell death and poor retention have hampered clinical outcomes. Consequently, the development of an efficient delivery system for stem cells to the target site is essential. The use of innovative tissue engineering techniques has opened up new horizons within the field of cellular cardiomyoplasty. This paper will present a comprehensive overview of the recent advancements in stem cell technology destined for myocardial tissue repair. In addition, the multidisciplinary approach to tissue engineering presented here will provide the reader with insight into the clinical realization of cellular cardiomyoplasty.
Collapse
|
17
|
Jayasinghe SN. Cell electrospinning: a novel tool for functionalising fibres, scaffolds and membranes with living cells and other advanced materials for regenerative biology and medicine. Analyst 2013; 138:2215-23. [DOI: 10.1039/c3an36599a] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|