1
|
Zhang Y, Zhang HX, Zheng QC. In Silico Study of Membrane Lipid Composition Regulating Conformation and Hydration of Influenza Virus B M2 Channel. J Chem Inf Model 2020; 60:3603-3615. [PMID: 32589410 DOI: 10.1021/acs.jcim.0c00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proton conduction of transmembrane influenza virus B M2 (BM2) proton channel is possibly mediated by the membrane environment, but the detailed molecular mechanism is challenging to determine. In this work, how membrane lipid composition regulates the conformation and hydration of BM2 channel is elucidated in silico. The appearance of several important hydrogen-bond networks has been discovered, as the addition of negatively charged lipid palmitoyloleoyl phosphatidylglycerol (POPG) and cholesterol reduces membrane fluidity and augments membrane rigidity. A more rigid membrane environment is beneficial to expand the channel, allow more water to enter the channel, promote channel hydration, and then even affect the proton conduction facilitated by the hydrated channel. Thus, membrane environment could be identified as an important influence factor of conformation and hydration of BM2. These findings can provide a unique perspective for understanding the mechanism of membrane lipid composition regulating conformation and hydration of BM2 and have important significance to the further study of anti-influenza virus B drugs.
Collapse
Affiliation(s)
- Yue Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
2
|
Liu K, Wang Y, Du Z, Zhang C, Mi J. Anisotropic Dynamics of Binary Particles in Confined Geometries. Chemphyschem 2020; 21:531-539. [DOI: 10.1002/cphc.201901163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/06/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Kun Liu
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
- Changzhou Institute of Advanced MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| | - Zhongjie Du
- Changzhou Institute of Advanced MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Chen Zhang
- Changzhou Institute of Advanced MaterialsBeijing University of Chemical Technology Beijing 100029 China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
3
|
Tunable cell-surface mimetics as engineered cell substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2076-2093. [PMID: 29935145 DOI: 10.1016/j.bbamem.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Most recent breakthroughs in understanding cell adhesion, cell migration, and cellular mechanosensitivity have been made possible by the development of engineered cell substrates of well-defined surface properties. Traditionally, these substrates mimic the extracellular matrix (ECM) environment by the use of ligand-functionalized polymeric gels of adjustable stiffness. However, such ECM mimetics are limited in their ability to replicate the rich dynamics found at cell-cell contacts. This review focuses on the application of cell surface mimetics, which are better suited for the analysis of cell adhesion, cell migration, and cellular mechanosensitivity across cell-cell interfaces. Functionalized supported lipid bilayer systems were first introduced as biomembrane-mimicking substrates to study processes of adhesion maturation during adhesion of functionalized vesicles (cell-free assay) and plated cells. However, while able to capture adhesion processes, the fluid lipid bilayer of such a relatively simple planar model membrane prevents adhering cells from transducing contractile forces to the underlying solid, making studies of cell migration and cellular mechanosensitivity largely impractical. Therefore, the main focus of this review is on polymer-tethered lipid bilayer architectures as biomembrane-mimicking cell substrate. Unlike supported lipid bilayers, these polymer-lipid composite materials enable the free assembly of linkers into linker clusters at cellular contacts without hindering cell spreading and migration and allow the controlled regulation of mechanical properties, enabling studies of cellular mechanosensitivity. The various polymer-tethered lipid bilayer architectures and their complementary properties as cell substrates are discussed.
Collapse
|
4
|
Birkholz O, Burns JR, Richter CP, Psathaki OE, Howorka S, Piehler J. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat Commun 2018; 9:1521. [PMID: 29670084 PMCID: PMC5906680 DOI: 10.1038/s41467-018-02905-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Synthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DNA nanopores bind to and dynamically interact with lipid bilayers. Here we use single-molecule fluorescence microscopy to establish that DNA nanopores carrying cholesterol anchors insert via a two-step mechanism into membranes. Nanopores are furthermore shown to locally cluster and remodel membranes into nanoscale protrusions. Most strikingly, the DNA pores can function as cytoskeletal components by stabilizing autonomously formed lipid nanotubes. The combination of membrane puncturing and remodeling activity can be attributed to the DNA pores’ tunable transition between two orientations to either span or co-align with the lipid bilayer. This insight is expected to catalyze the development of future functional nanodevices relevant in synthetic biology and nanobiotechnology. DNA nanopores can span lipid bilayers but how they interact with lipids is not known. Here the authors establish at single-molecule level the insertion mechanism and show that DNA nanopores can locally cluster and remodel membranes, and stabilize autonomously formed lipid nanotubes.
Collapse
|
5
|
Ligand-induced type II interleukin-4 receptor dimers are sustained by rapid re-association within plasma membrane microcompartments. Nat Commun 2017; 8:15976. [PMID: 28706306 PMCID: PMC5519985 DOI: 10.1038/ncomms15976] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand–receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling. The contribution of ligands for cytokine receptor dimerization is still not fully understood. Here, the authors show the efficient ligand-induced dimerization of type II interleukin-4 receptor at the plasma membrane and the kinetic trapping of signalling complexes by actin-dependent membrane microdomains.
Collapse
|
6
|
You C, Marquez-Lago TT, Richter CP, Wilmes S, Moraga I, Garcia KC, Leier A, Piehler J. Receptor dimer stabilization by hierarchical plasma membrane microcompartments regulates cytokine signaling. SCIENCE ADVANCES 2016; 2:e1600452. [PMID: 27957535 PMCID: PMC5135388 DOI: 10.1126/sciadv.1600452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
The interaction dynamics of signaling complexes is emerging as a key determinant that regulates the specificity of cellular responses. We present a combined experimental and computational study that quantifies the consequences of plasma membrane microcompartmentalization for the dynamics of type I interferon receptor complexes. By using long-term dual-color quantum dot (QD) tracking, we found that the lifetime of individual ligand-induced receptor heterodimers depends on the integrity of the membrane skeleton (MSK), which also proved important for efficient downstream signaling. By pair correlation tracking and localization microscopy as well as by fast QD tracking, we identified a secondary confinement within ~300-nm-sized zones. A quantitative spatial stochastic diffusion-reaction model, entirely parameterized on the basis of experimental data, predicts that transient receptor confinement by the MSK meshwork allows for rapid reassociation of dissociated receptor dimers. Moreover, the experimentally observed apparent stabilization of receptor dimers in the plasma membrane was reproduced by simulations of a refined, hierarchical compartment model. Our simulations further revealed that the two-dimensional association rate constant is a key parameter for controlling the extent of MSK-mediated stabilization of protein complexes, thus ensuring the specificity of this effect. Together, experimental evidence and simulations support the hypothesis that passive receptor confinement by MSK-based microcompartmentalization promotes maintenance of signaling complexes in the plasma membrane.
Collapse
Affiliation(s)
- Changjiang You
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | | | | | - Stephan Wilmes
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - André Leier
- Isaac Newton Institute for Mathematical Sciences, University of Cambridge, Cambridge, U.K
- Okinawa Institute of Science and Technology, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| |
Collapse
|
7
|
Abstract
INTRODUCTION The past decade has witnessed tremendous progress in surface micropatterning techniques for generating arrays of various types of biomolecules. Multiplexed protein micropatterning has tremendous potential for drug discovery providing versatile means for high throughput assays required for target and lead identification as well as diagnostics and functional screening for personalized medicine. However, ensuring the functional integrity of proteins on surfaces has remained challenging, in particular in the case of membrane proteins, the most important class of drug targets. Yet, generic strategies to control functional organization of proteins into micropatterns are emerging. AREAS COVERED This review includes an overview introducing the most common approaches for surface modification and functional protein immobilization. The authors present the key photo and soft lithography techniques with respect to compatibility with functional protein micropatterning and multiplexing capabilities. In the second part, the authors present the key applications of protein micropatterning techniques in drug discovery with a focus on membrane protein interactions and cellular signaling. EXPERT OPINION With the growing importance of target discovery as well as protein-based therapeutics and personalized medicine, the application of protein arrays can play a fundamental role in drug discovery. Yet, important technical breakthroughs are still required for broad application of these approaches, which will include in vitro "copying" of proteins from cDNA arrays into micropatterns, direct protein capturing from single cells as well as protein microarrays in living cells.
Collapse
Affiliation(s)
- Changjiang You
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| | - Jacob Piehler
- a Department of Biology, Division of Biophysics , University of Osnabrück , Osnabrück 49076 , Germany
| |
Collapse
|
8
|
High efficiency cell-specific targeting of cytokine activity. Nat Commun 2015; 5:3016. [PMID: 24398568 DOI: 10.1038/ncomms4016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022] Open
Abstract
Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This 'activity-by-targeting' concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.
Collapse
|
9
|
Peel MJ, Cross SJ, Birkholz O, Aladağ A, Piehler J, Peel S. Rupture of Stochastically Occurring Vesicle Clusters Limits Bilayer Formation on Alkane-PEG-Type Supports: Uncoupling Clustering from Surface Coverage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8830-40. [PMID: 26176185 DOI: 10.1021/acs.langmuir.5b00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Polymer-supported bilayers (PSBs) are a recognized tool for drug discovery through function-interaction analysis of membrane proteins. While silica-supported bilayers (SSBs) spontaneously form from surface-adsorbed vesicles, successful PSB formation via a similar method has thus far been limited by an insufficient understanding of the underlying vesicle-remodelling processes. Here, we generated a polymer support through the incubation of poly-L-lysine conjugated to alkyl-chain-terminated poly(ethylene)glycol on silica. This polymer-coated silica substrate yielded efficient vesicle adsorption and spontaneous bilayer formation, thereby providing a rare opportunity to address the mechanism of PSB formation and compare it to that of SSB. The combined use of super-resolution imaging, kinetics, and simulations indicates that the rupture of stochastically formed vesicle clusters is the rate-limiting step, which is an order of magnitude higher for silica than for polymer-coated silica. This was confirmed by directly demonstrating increased rupture rates for surface adsorbed multivesicle assemblies formed by vesicle cross-linking in solution. On the basis of this key insight we surmised that a low propensity of cluster rupture can be compensated for by an increase in the number density of clusters: the deposition of a mixture of oppositely charged vesicles resulted in bilayer formation on another alkane-PEG type of interface, which despite efficient vesicle adsorption otherwise fails to support spontaneous bilayer formation. This potentially provides a universal strategy for promoting bilayer formation on resistant surfaces without resorting to modifying the surface itself. Therefore, multivesicle assemblies with tailored geometries not only could facilitate bilayer formation on polymers with interesting functional properties but also could instigate the exploration of vesicle architecture for other processes involving vesicle remodelling such as drug delivery.
Collapse
Affiliation(s)
| | | | - Oliver Birkholz
- §Department of Biology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | - Jacob Piehler
- §Department of Biology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | | |
Collapse
|
10
|
Meyer RA, Sunshine JC, Green JJ. Biomimetic particles as therapeutics. Trends Biotechnol 2015; 33:514-524. [PMID: 26277289 DOI: 10.1016/j.tibtech.2015.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
Abstract
In recent years, there have been major advances in the development of novel nanoparticle- and microparticle-based therapeutics. An emerging paradigm is the incorporation of biomimetic features into these synthetic therapeutic constructs to enable them to better interface with biological systems. Through the control of size, shape, and material consistency, particle cores have been generated that better mimic natural cells and viruses. In addition, there have been significant advances in biomimetic surface functionalization of particles through the integration of bio-inspired artificial cell membranes and naturally derived cell membranes. Biomimetic technologies enable therapeutic particles to have increased potency to benefit human health.
Collapse
Affiliation(s)
- Randall A Meyer
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith 5017, Baltimore MD, 21231, USA
| | - Joel C Sunshine
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith 5017, Baltimore MD, 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, Johns Hopkins School of Medicine, 400 N Broadway, Smith 5017, Baltimore MD, 21231, USA.,Departments of Materials Science and Engineering, Oncology, Ophthalmology, and Neurosurgery, Johns Hopkins School of Medicine, 400 N Broadway, Smith 5017, Baltimore MD, 21231, USA
| |
Collapse
|
11
|
Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. ACTA ACUST UNITED AC 2015; 209:579-93. [PMID: 26008745 PMCID: PMC4442803 DOI: 10.1083/jcb.201412049] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Véronique Francois-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Christian P Richter
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Dennis Janning
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Cindy Kroll
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Patrizia Hanhart
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Katharina Hötte
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Gilles Uzé
- Centre National de la Recherche Scientifique Montpellier, 34095 Montpellier, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
12
|
Wang L, Roth JS, Han X, Evans SD. Photosynthetic Proteins in Supported Lipid Bilayers: Towards a Biokleptic Approach for Energy Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3306-3318. [PMID: 25727786 DOI: 10.1002/smll.201403469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
In nature, plants and some bacteria have evolved an ability to convert solar energy into chemical energy usable by the organism. This process involves several proteins and the creation of a chemical gradient across the cell membrane. To transfer this process to a laboratory environment, several conditions have to be met: i) proteins need to be reconstituted into a lipid membrane, ii) the proteins need to be correctly oriented and functional and, finally, iii) the lipid membrane should be capable of maintaining chemical and electrical gradients. Investigating the processes of photosynthesis and energy generation in vivo is a difficult task due to the complexity of the membrane and its associated proteins. Solid, supported lipid bilayers provide a good model system for the systematic investigation of the different components involved in the photosynthetic pathway. In this review, the progress made to date in the development of supported lipid bilayer systems suitable for the investigation of membrane proteins is described; in particular, there is a focus on those used for the reconstitution of proteins involved in light capture.
Collapse
Affiliation(s)
- Lei Wang
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Johannes S Roth
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Löchte S, Waichman S, Beutel O, You C, Piehler J. Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane. ACTA ACUST UNITED AC 2015; 207:407-18. [PMID: 25385185 PMCID: PMC4226739 DOI: 10.1083/jcb.201406032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of micropatterned surfaces that bind HaloTag fusion proteins allows spatial organization of plasma membrane proteins for efficient visualization and quantification of protein–protein interactions in live cells. Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised. Efficient micropatterning of the type I interferon (IFN) receptor subunit IFNAR2 fused to the HaloTag was achieved, and highly specific IFN binding to the receptor was detected. The dynamics of this interaction could be quantified on the single molecule level, and IFN-induced receptor dimerization in micropatterns could be monitored. Assembly of active signaling complexes was confirmed by immunostaining of phosphorylated Janus family kinases, and the interaction dynamics of cytosolic effector proteins recruited to the receptor complex were unambiguously quantified by fluorescence recovery after photobleaching.
Collapse
Affiliation(s)
- Sara Löchte
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sharon Waichman
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
14
|
Roder F, Wilmes S, Richter CP, Piehler J. Rapid transfer of transmembrane proteins for single molecule dimerization assays in polymer-supported membranes. ACS Chem Biol 2014; 9:2479-84. [PMID: 25203456 DOI: 10.1021/cb5005806] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dimerization of transmembrane receptors is a key regulatory factor in cellular communication, which has remained challenging to study under well-defined conditions in vitro. We developed a novel strategy to explore membrane protein interactions in a controlled lipid environment requiring minute sample quantities. By rapid transfer of transmembrane proteins from mammalian cells into polymer-supported membranes, membrane proteins could be efficiently fluorescence labeled and reconstituted with very low background. Thus, differential ligand-induced dimerization of the type I interferon (IFN) receptor subunits IFNAR1 and IFNAR2 could be probed quantitatively at physiologically relevant concentrations by single molecule imaging. These measurements clearly support a regulatory role of the affinity of IFNs toward IFNAR1 for controlling the level of receptor dimerization.
Collapse
Affiliation(s)
- Friedrich Roder
- Division
of Biophysics, Department
of Biology, University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Stephan Wilmes
- Division
of Biophysics, Department
of Biology, University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Christian P. Richter
- Division
of Biophysics, Department
of Biology, University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Division
of Biophysics, Department
of Biology, University of Osnabrück, Barbarastr. 11, 49076 Osnabrück, Germany
| |
Collapse
|